Some Properties of Cells and Arcs ${ }^{1}$

Robert Milewski
University of Białystok

Artur Korniłowicz
University of Białystok

Andrzej Trybulec University of Białystok
Adam Naumowicz
University of Białystok

MML Identifier: JORDAN1B.

The notation and terminology used in this paper are introduced in the following papers: [25], [2], [11], [26], [21], [12], [3], [5], [30], [7], [28], [6], [18], [22], [17], [24], [20], [23], [8], [10], [16], [1], [27], [9], [4], [15], [32], [19], [29], [31], [13], and [14].

For simplicity, we adopt the following convention: E denotes a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}, C$ denotes a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}, G$ denotes a Go-board, i, j, m, n denote natural numbers, and p denotes a point of $\mathcal{E}_{\mathrm{T}}^{2}$.

Let us observe that every simple closed curve is non vertical and non horizontal.

Let T be a non empty topological space. Note that there exists a union of components of T which is non empty.

The following propositions are true:
(1) Let T be a non empty topological space and A be a non empty union of components of T. If A is connected, then A is a component of T.
(2) For every finite sequence f holds f is empty iff $\operatorname{Rev}(f)$ is empty.
(3) Let D be a non empty set, f be a finite sequence of elements of D, and given i, j. If $1 \leqslant i$ and $i \leqslant \operatorname{len} f$ and $1 \leqslant j$ and $j \leqslant \operatorname{len} f$, then $\operatorname{mid}(f, i, j)$ is non empty.
(4) Let f be a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $1 \leqslant \operatorname{len} f$ and $p \in \widetilde{\mathcal{L}}(f)$, then $(\downharpoonright f, p)(1)=f(1)$.
(5) Let f be a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If f is a special sequence and $p \in \widetilde{\mathcal{L}}(f)$, then $(\downharpoonleft p, f)($ len $\downharpoonleft p, f)=$ $f(\operatorname{len} f)$.

[^0](6) For every simple closed curve P holds W-max $P \neq \mathrm{E}-\max P$.
(7) Let D be a non empty set and f be a finite sequence of elements of D. If $1 \leqslant i$ and $i<\operatorname{len} f$, then $\left(\operatorname{mid}\left(f, i, \operatorname{len} f-^{\prime} 1\right)\right)^{\wedge}\left\langle f_{\operatorname{len} f}\right\rangle=\operatorname{mid}(f, i, \operatorname{len} f)$.
(8) For all points p, q of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \neq q$ and $\mathcal{L}(p, q)$ is vertical holds $\langle p$, $q\rangle$ is a special sequence.
(9) For all points p, q of $\mathcal{E}_{\text {T }}^{2}$ such that $p \neq q$ and $\mathcal{L}(p, q)$ is horizontal holds $\langle p, q\rangle$ is a special sequence.
(10) Let p, q be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and v be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If p is in the area of q, then p_{\circlearrowleft}^{v} is in the area of q.
(11) For every non trivial finite sequence p of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ and for every point v of $\mathcal{E}_{\mathrm{T}}^{2}$ holds p_{\circlearrowleft}^{v} is in the area of p.
(12) For every finite sequence f holds Center $f \geqslant 1$.
(13) For every finite sequence f such that len $f \geqslant 1$ holds Center $f \leqslant \operatorname{len} f$.
(14) Center $G \leqslant \operatorname{len} G$.
(15) For every finite sequence f such that len $f \geqslant 2$ holds Center $f>1$.
(16) For every finite sequence f such that len $f \geqslant 3$ holds Center $f<\operatorname{len} f$.
(17) Center Gauge $(E, n)=2^{n-1}+2$.
(18) $E \subseteq \operatorname{cell}(\operatorname{Gauge}(E, 0), 2,2)$.
(19) $\operatorname{cell}(\operatorname{Gauge}(E, 0), 2,2) \nsubseteq \operatorname{BDD} E$.
(20) $\quad(\operatorname{Gauge}(C, 1))_{\text {Center Gauge }(C, 1), 1}=$ $\left[\frac{\mathrm{W} \text {-bound } C+\mathrm{E} \text {-bound } C}{2}\right.$, S-bound $\left.\widetilde{\mathcal{L}}(\operatorname{Cage}(C, 1))\right]$.
(21) $\quad(\operatorname{Gauge}(C, 1))_{\text {Center Gauge }(C, 1), \text { len Gauge }(C, 1)}=$ $\left[\frac{\text { W-bound } C+\text { E-bound } C}{2}, N\right.$-bound $\left.\widetilde{\mathcal{L}}(\operatorname{Cage}(C, 1))\right]$.
(22) If $1 \leqslant j$ and $j<$ width G and $1 \leqslant m$ and $m \leqslant$ len G and $1 \leqslant n$ and $n \leqslant$ width G and $p \in \operatorname{cell}(G$, len $G, j)$ and $p_{\mathbf{1}}=\left(G_{m, n}\right)_{\mathbf{1}}$, then len $G=m$.
(23) Suppose $1 \leqslant i$ and $i \leqslant \operatorname{len} G$ and $1 \leqslant j$ and $j<$ width G and $1 \leqslant m$ and $m \leqslant \operatorname{len} G$ and $1 \leqslant n$ and $n \leqslant$ width G and $p \in \operatorname{cell}(G, i, j)$ and $p_{\mathbf{1}}=\left(G_{m, n}\right)_{\mathbf{1}}$. Then $i=m$ or $i=m-^{\prime} 1$.
(24) If $1 \leqslant i$ and $i<\operatorname{len} G$ and $1 \leqslant m$ and $m \leqslant \operatorname{len} G$ and $1 \leqslant n$ and $n \leqslant$ width G and $p \in \operatorname{cell}(G, i$, width $G)$ and $p_{\mathbf{2}}=\left(G_{m, n}\right)_{\mathbf{2}}$, then width $G=n$.
(25) Suppose $1 \leqslant i$ and $i<\operatorname{len} G$ and $1 \leqslant j$ and $j \leqslant$ width G and $1 \leqslant m$ and $m \leqslant \operatorname{len} G$ and $1 \leqslant n$ and $n \leqslant$ width G and $p \in \operatorname{cell}(G, i, j)$ and $p_{\mathbf{2}}=\left(G_{m, n}\right)_{\mathbf{2}}$. Then $j=n$ or $j=n-{ }^{\prime} 1$.
(26) For every simple closed curve C and for every real number r such that W-bound $C \leqslant r$ and $r \leqslant$ E-bound C holds $\mathcal{L}([r, \mathrm{~S}$-bound $C],[r$, N-bound $C]$) meets UpperArc C.
(27) For every simple closed curve C and for every real number r such that W-bound $C \leqslant r$ and $r \leqslant$ E-bound C holds $\mathcal{L}([r, \mathrm{~S}$-bound $C],[r$,

N-bound $C]$) meets LowerArc C.
(28) Let C be a simple closed curve and i be a natural number. If $1<i$ and $i<$ len $\operatorname{Gauge}(C, n)$, then $\mathcal{L}\left((\operatorname{Gauge}(C, n))_{i, 1},(\operatorname{Gauge}(C, n))_{i, \operatorname{len} \operatorname{Gauge}(C, n)}\right)$ meets UpperArc C.
(29) Let C be a simple closed curve and i be a natural number. If $1<i$ and $i<\operatorname{len} \operatorname{Gauge}(C, n)$, then $\mathcal{L}\left((\operatorname{Gauge}(C, n))_{i, 1},(\operatorname{Gauge}(C, n))_{i, \text { len } \operatorname{Gauge}(C, n)}\right)$ meets LowerArc C.
(30) For every simple closed curve C holds $\mathcal{L}\left((\operatorname{Gauge}(C, n))_{\text {Center Gauge }(C, n), 1}\right.$, (Gauge $\left.(C, n))_{\text {Center Gauge }(C, n), \text { len Gauge }(C, n)}\right)$ meets UpperArc C.
(31) For every simple closed curve C holds $\mathcal{L}\left((\operatorname{Gauge}(C, n))_{\text {Center Gauge }(C, n), 1}\right.$, (Gauge $\left.(C, n))_{\text {Center Gauge }(C, n), \text { len Gauge }(C, n)}\right)$ meets LowerArc C.
(32) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and i be a natural number. If $1 \leqslant i$ and $i \leqslant$ len Gauge (C, n), then $\mathcal{L}\left((\operatorname{Gauge}(C, n))_{i, 1},(\operatorname{Gauge}(C, n))_{i, \text { len } \operatorname{Gauge}(C, n)}\right)$ meets UpperArc $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(33) Let C be a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and i be a natural number. If $1 \leqslant i$ and $i \leqslant$ len Gauge (C, n), then $\mathcal{L}\left((\operatorname{Gauge}(C, n))_{i, 1},(\operatorname{Gauge}(C, n))_{i, \text { len } \operatorname{Gauge}(C, n)}\right)$ meets LowerArc $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(34) For every compact connected non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\mathcal{L}\left((\operatorname{Gauge}(C, n))_{\text {Center Gauge }(C, n), 1}\right.$,
(Gauge $\left.(C, n))_{\text {Center Gauge }(C, n), \text { len Gauge }(C, n)}\right)$ meets UpperArc $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(35) For every compact connected non vertical non horizontal subset C of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $\mathcal{L}\left((\operatorname{Gauge}(C, n))_{\text {Center Gauge }(C, n), 1}\right.$, (Gauge $\left.(C, n))_{\text {Center Gauge }(C, n) \text {,len Gauge }(C, n)}\right)$ meets LowerArc $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(36) If $j \leqslant \operatorname{width} G$, then $\operatorname{cell}(G, 0, j)$ is not Bounded.
(37) If $i \leqslant \operatorname{width} G$, then $\operatorname{cell}(G, \operatorname{len} G, i)$ is not Bounded.
(38) If $j \leqslant$ width Gauge (C, n), then $\operatorname{cell}(\operatorname{Gauge}(C, n), 0, j) \subseteq \operatorname{UBD} C$.
(39) If $j \leqslant \operatorname{len} \operatorname{Gauge}(E, n)$, then $\operatorname{cell}(\operatorname{Gauge}(E, n)$, len $\operatorname{Gauge}(E, n), j) \subseteq$ UBD E.
(40) If $i \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$ and $j \leqslant \operatorname{width} \operatorname{Gauge}(C, n)$ and $\operatorname{cell}(\operatorname{Gauge}(C, n), i, j) \subseteq$ $\operatorname{BDD} C$, then $j>1$.
(41) If $i \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$ and $j \leqslant \operatorname{width} \operatorname{Gauge}(C, n)$ and $\operatorname{cell}(\operatorname{Gauge}(C, n), i, j) \subseteq$ $\operatorname{BDD} C$, then $i>1$.
(42) If $i \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$ and $j \leqslant \operatorname{width} \operatorname{Gauge}(C, n)$ and $\operatorname{cell}(\operatorname{Gauge}(C, n), i, j) \subseteq$ $\operatorname{BDD} C$, then $j+1<$ width Gauge (C, n).
(43) If $i \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$ and $j \leqslant$ width Gauge (C, n) and $\operatorname{cell}(\operatorname{Gauge}(C, n), i, j) \subseteq$ $\operatorname{BDD} C$, then $i+1<\operatorname{len} \operatorname{Gauge}(C, n)$.
(44) If there exist i, j such that $i \leqslant$ len $\operatorname{Gauge}(C, n)$ and $j \leqslant$ width Gauge (C, n) and $\operatorname{cell}(\operatorname{Gauge}(C, n), i, j) \subseteq \operatorname{BDD} C$, then $n \geqslant 1$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
[8] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25-27, 1999.
[9] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[10] Czesław Byliński and Mariusz Żynel. Cages - the external approximation of Jordan’s curve. Formalized Mathematics, 9(1):19-24, 2001.
[11] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[12] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[13] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[14] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[16] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[17] Artur Korniłowicz, Robert Milewski, Adam Naumowicz, and Andrzej Trybulec. Gauges and cages. Part I. Formalized Mathematics, 9(3):501-509, 2001.
[18] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[19] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
[20] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255-263, 1997.
[21] Yatsuka Nakamura and Andrzej Trybulec. Components and unions of components. Formalized Mathematics, 5(4):513-517, 1996.
[22] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[23] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563-572, 1997.
[24] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.
[25] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[26] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[27] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[28] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317-322, 1996.
[29] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized Mathematics, 6(4):541-548, 1997.
[30] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received October 6, 2000

[^0]: ${ }^{1}$ This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

