Gauges and Cages. Part \mathbf{I}^{1}

Artur Korniłowicz
University of Białystok

Adam Naumowicz
University of Białystok

Robert Milewski
University of Białystok
Andrzej Trybulec
University of Białystok

MML Identifier: JORDAN1A.

The notation and terminology used in this paper have been introduced in the following articles: [28], [24], [32], [9], [25], [10], [2], [3], [30], [29], [4], [5], [18], [21], [23], [22], [6], [8], [14], [1], [19], [26], [7], [27], [13], [33], [17], [16], [20], [31], [11], [12], and [15].

1. Preliminaries

For simplicity, we use the following convention: $i, i_{1}, i_{2}, j, j_{1}, j_{2}, k, m, n, t$ denote natural numbers, D denotes a non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}, E$ denotes a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}, C$ denotes a compact connected non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}, G$ denotes a Go-board, p, q, x denote points of $\mathcal{E}_{\mathrm{T}}^{2}$, and r, s denote real numbers.

The following propositions are true:
(1) For all real numbers s_{1}, s_{3}, s_{4}, l such that $s_{1} \leqslant s_{3}$ and $s_{1} \leqslant s_{4}$ and $0 \leqslant l$ and $l \leqslant 1$ holds $s_{1} \leqslant(1-l) \cdot s_{3}+l \cdot s_{4}$.
(2) For all real numbers s_{1}, s_{3}, s_{4}, l such that $s_{3} \leqslant s_{1}$ and $s_{4} \leqslant s_{1}$ and $0 \leqslant l$ and $l \leqslant 1$ holds $(1-l) \cdot s_{3}+l \cdot s_{4} \leqslant s_{1}$.
(3) If $n>0$, then $m^{n} \bmod m=0$.
(4) If $j>0$ and $i \bmod j=0$, then $i \div j=\frac{i}{j}$.
(5) If $n>0$, then $i^{n} \div i=\frac{i^{n}}{i}$.

[^0](6) If $0<n$ and $1<r$, then $1<r^{n}$.
(7) If $r>1$ and $m>n$, then $r^{m}>r^{n}$.
(8) Let T be a non empty topological space, A be a subset of T, and B, C be subsets of the carrier of T. If A is connected and C is a component of B and $A \cap C \neq \emptyset$ and $A \subseteq B$, then $A \subseteq C$.
Let f be a finite sequence. The functor Center f yields a natural number and is defined as follows:
(Def. 1) Center $f=(\operatorname{len} f \div 2)+1$.
The following two propositions are true:
(9) For every finite sequence f such that $\operatorname{len} f$ is odd holds $\operatorname{len} f=2$. Center $f-1$.
(10) For every finite sequence f such that len f is even holds len $f=2$. Center $f-2$.

2. Some Subsets of the Plane

One can check the following observations:

* there exists a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ which is compact, non vertical, non horizontal, and non empty and satisfies conditions of simple closed curve,
* there exists a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ which is compact, non empty, and horizontal, and
* there exists a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ which is compact, non empty, and vertical.

The following propositions are true:
(11) If $p \in \mathrm{~N}$-most D, then $p_{2}=\mathrm{N}$-bound D.
(12) If $p \in \mathrm{E}$-most D, then $p_{1}=\mathrm{E}$-bound D.
(13) If $p \in \mathrm{~S}$-most D, then $p_{2}=\mathrm{S}$-bound D.
(14) If $p \in \mathrm{~W}$-most D, then $p_{1}=\mathrm{W}$-bound D.
(15) BDD D misses D.
(16) For every compact non empty subset S of \mathcal{E}_{T}^{2} satisfying conditions of simple closed curve holds LowerArc $S \subseteq S$ and UpperArc $S \subseteq S$.
(17) $p \in$ VerticalLine p_{1}.
(18) $[r, s] \in$ VerticalLine r.
(19) For every subset A of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $A \subseteq$ VerticalLine s holds A is vertical.
(20) $\quad(\operatorname{proj} 2)([r, s])=s$ and $(\operatorname{proj} 1)([r, s])=r$.
(21) If $p_{\mathbf{1}}=q_{1}$ and $r \in[(\operatorname{proj} 2)(p),(\operatorname{proj} 2)(q)]$, then $\left[p_{\mathbf{1}}, r\right] \in \mathcal{L}(p, q)$.
(22) If $p_{\mathbf{2}}=q_{\mathbf{2}}$ and $r \in[(\operatorname{proj} 1)(p),(\operatorname{proj} 1)(q)]$, then $\left[r, p_{\mathbf{2}}\right] \in \mathcal{L}(p, q)$.
(23) If $p \in$ VerticalLines and $q \in$ VerticalLine s, then $\mathcal{L}(p, q) \subseteq$ VerticalLine s.
Let S be a non empty subset of $\mathcal{E}_{\text {T }}^{2}$ satisfying conditions of simple closed curve. Observe that LowerArc S is non empty and compact and UpperArc S is non empty and compact.

We now state several propositions:
(24) For all subsets A, B of $\mathcal{E}_{\mathrm{T}}^{2}$ such that A meets B holds ($\left.\operatorname{proj} 2\right)^{\circ} A$ meets $(\text { proj2 } 2)^{\circ} B$.
(25) For all subsets A, B of \mathcal{E}_{T}^{2} such that A misses B and $A \subseteq$ VerticalLine s and $B \subseteq$ VerticalLine s holds $(\operatorname{proj} 2)^{\circ} A$ misses $(\operatorname{proj} 2)^{\circ} B$.
(26) For every closed subset S of $\mathcal{E}_{\mathrm{T}}^{2}$ such that S is Bounded holds (proj2) ${ }^{\circ} S$ is closed.
(27) For every subset S of $\mathcal{E}_{\mathrm{T}}^{2}$ such that S is Bounded holds $(\operatorname{proj} 2)^{\circ} S$ is bounded.
(28) For every compact subset S of $\mathcal{E}_{\mathrm{T}}^{2}$ holds ($\left.\operatorname{proj} 2\right)^{\circ} S$ is compact.

In this article we present several logical schemes. The scheme TRSubsetEx deals with a natural number \mathcal{A} and a unary predicate \mathcal{P}, and states that:

There exists a subset A of $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$ such that for every point p of $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$ holds $p \in A$ iff $\mathcal{P}[p]$
for all values of the parameters.
The scheme TRSubsetUniq deals with a natural number \mathcal{A} and a unary predicate \mathcal{P}, and states that:

Let A, B be subsets of $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$. Suppose for every point p of $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$ holds $p \in A$ iff $\mathcal{P}[p]$ and for every point p of $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$ holds $p \in B$ iff $\mathcal{P}[p]$. Then $A=B$
for all values of the parameters.
Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. The functor NorthHalfline p yielding a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined as follows:
(Def. 2) For every point x of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $x \in \operatorname{NorthHalfline} p$ iff $x_{1}=p_{1}$ and $x_{2} \geqslant p_{2}$. The functor EastHalfline p yielding a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined as follows:
(Def. 3) For every point x of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $x \in$ EastHalfline p iff $x_{\mathbf{1}} \geqslant p_{\mathbf{1}}$ and $x_{\mathbf{2}}=p_{\mathbf{2}}$.
The functor SouthHalfline p yielding a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined as follows:
(Def. 4) For every point x of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $x \in$ SouthHalfline p iff $x_{1}=p_{\mathbf{1}}$ and $x_{\mathbf{2}} \leqslant p_{\mathbf{2}}$.
The functor WestHalfline p yields a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by:
(Def. 5) For every point x of $\mathcal{E}_{\mathrm{T}}^{2}$ holds $x \in$ WestHalfline p iff $x_{1} \leqslant p_{1}$ and $x_{2}=p_{2}$.
The following propositions are true:
(29) NorthHalfline $p=\left\{q ; q\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: q_{1}=p_{1} \wedge q_{2} \geqslant p_{2}\right\}$.
(30) NorthHalfline $p=\left\{\left[p_{\mathbf{1}}, r\right] ; r\right.$ ranges over elements of $\left.\mathbb{R}: r \geqslant p_{\mathbf{2}}\right\}$.
(31) EastHalfline $p=\left\{q ; q\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: q_{1} \geqslant p_{1} \wedge q_{2}=p_{\mathbf{2}}\right\}$.
(32) EastHalfline $p=\left\{\left[r, p_{\mathbf{2}}\right] ; r\right.$ ranges over elements of $\left.\mathbb{R}: r \geqslant p_{\mathbf{1}}\right\}$.
(33) SouthHalfline $p=\left\{q ; q\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: q_{\mathbf{1}}=p_{\mathbf{1}} \wedge q_{\mathbf{2}} \leqslant p_{\mathbf{2}}\right\}$.
(34) SouthHalfline $p=\left\{\left[p_{\mathbf{1}}, r\right] ; r\right.$ ranges over elements of $\left.\mathbb{R}: r \leqslant p_{\mathbf{2}}\right\}$.
(35) WestHalfline $p=\left\{q ; q\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: q_{1} \leqslant p_{1} \wedge q_{2}=p_{2}\right\}$.
(36) WestHalfline $p=\left\{\left[r, p_{\mathbf{2}}\right] ; r\right.$ ranges over elements of $\left.\mathbb{R}: r \leqslant p_{\mathbf{1}}\right\}$.

Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. One can check the following observations:

* NorthHalfline p is non empty and convex,
* EastHalfline p is non empty and convex,
* SouthHalfline p is non empty and convex, and
* WestHalfline p is non empty and convex.

3. Goboards

We now state a number of propositions:
(37) If $1 \leqslant i$ and $i \leqslant \operatorname{len} G$ and $1 \leqslant j$ and $j \leqslant$ width G, then $G_{i, j} \in$ $\mathcal{L}\left(G_{i, 1}, G_{i, \text { width } G}\right)$.
(38) If $1 \leqslant i$ and $i \leqslant \operatorname{len} G$ and $1 \leqslant j$ and $j \leqslant$ width G, then $G_{i, j} \in$ $\mathcal{L}\left(G_{1, j}, G_{\text {len } G, j}\right)$.
(39) If $1 \leqslant j_{1}$ and $j_{1} \leqslant$ width G and $1 \leqslant j_{2}$ and $j_{2} \leqslant$ width G and $1 \leqslant i_{1}$ and $i_{1} \leqslant i_{2}$ and $i_{2} \leqslant \operatorname{len} G$, then $\left(G_{i_{1}, j_{1}}\right)_{\mathbf{1}} \leqslant\left(G_{i_{2}, j_{2}}\right)_{\mathbf{1}}$.
(40) If $1 \leqslant i_{1}$ and $i_{1} \leqslant \operatorname{len} G$ and $1 \leqslant i_{2}$ and $i_{2} \leqslant \operatorname{len} G$ and $1 \leqslant j_{1}$ and $j_{1} \leqslant j_{2}$ and $j_{2} \leqslant$ width G, then $\left(G_{i_{1}, j_{1}}\right)_{\mathbf{2}} \leqslant\left(G_{i_{2}, j_{2}}\right)_{\mathbf{2}}$.
(41) Let f be a non constant standard special circular sequence. Suppose f is a sequence which elements belong to G and $1 \leqslant t$ and $t \leqslant \operatorname{len} G$. Then $\left(G_{t, \text { width } G}\right)_{\mathbf{2}} \geqslant \mathrm{N}$-bound $\widetilde{\mathcal{L}}(f)$.
(42) Let f be a non constant standard special circular sequence. Suppose f is a sequence which elements belong to G and $1 \leqslant t$ and $t \leqslant$ width G. Then $\left(G_{1, t}\right)_{\mathbf{1}} \leqslant$ W-bound $\widetilde{\mathcal{L}}(f)$.
(43) Let f be a non constant standard special circular sequence. Suppose f is a sequence which elements belong to G and $1 \leqslant t$ and $t \leqslant \operatorname{len} G$. Then $\left(G_{t, 1}\right)_{2} \leqslant$ S-bound $\widetilde{\mathcal{L}}(f)$.
(44) Let f be a non constant standard special circular sequence. Suppose f is a sequence which elements belong to G and $1 \leqslant t$ and $t \leqslant$ width G. Then $\left(G_{\text {len } G, t}\right)_{\mathbf{1}} \geqslant$ E-bound $\widetilde{\mathcal{L}}(f)$.
(45) If $i \leqslant \operatorname{len} G$ and $j \leqslant$ width G, then $\operatorname{cell}(G, i, j)$ is non empty.
(46) If $i \leqslant \operatorname{len} G$ and $j \leqslant \operatorname{width} G$, then $\operatorname{cell}(G, i, j)$ is connected.
(47) If $i \leqslant \operatorname{len} G$, then $\operatorname{cell}(G, i, 0)$ is not Bounded.
(48) If $i \leqslant \operatorname{len} G$, then $\operatorname{cell}(G, i$, width $G)$ is not Bounded.

4. GAUGES

One can prove the following propositions:
(49) \quad width Gauge $(D, n)=2^{n}+3$.
(50) If $i<j$, then len $\operatorname{Gauge}(D, i)<$ len $\operatorname{Gauge}(D, j)$.
(51) If $i \leqslant j$, then len $\operatorname{Gauge}(D, i) \leqslant$ len $\operatorname{Gauge}(D, j)$.
(52) If $m \leqslant n$ and $1<i$ and $i<$ len $\operatorname{Gauge}(D, m)$, then $1<2^{n-^{\prime} m} \cdot(i-2)+2$ and $2^{n-^{\prime} m} \cdot(i-2)+2<$ len $\operatorname{Gauge}(D, n)$.
(53) If $m \leqslant n$ and $1<i$ and $i<$ width $\operatorname{Gauge}(D, m)$, then $1<2^{n-{ }^{\prime} m} \cdot(i-2)+2$ and $2^{n-' m} \cdot(i-2)+2<$ width $\operatorname{Gauge}(D, n)$.
(54) Suppose $m \leqslant n$ and $1<i$ and $i<\operatorname{len} \operatorname{Gauge}(D, m)$ and $1<j$ and $j<$ width Gauge (D, m). Let i_{1}, j_{1} be natural numbers. If $i_{1}=2^{n-{ }^{\prime} m} \cdot(i-2)+2$ and $j_{1}=2^{n-^{\prime} m} \cdot(j-2)+2$, then $(\operatorname{Gauge}(D, m))_{i, j}=(\operatorname{Gauge}(D, n))_{i_{1}, j_{1}}$.
(55) If $m \leqslant n$ and $1<i$ and $i+1<$ len $\operatorname{Gauge}(D, m)$, then $1<2^{n-^{\prime} m} \cdot(i-1)+2$ and $2^{n-^{\prime} m} \cdot(i-1)+2 \leqslant$ len $\operatorname{Gauge}(D, n)$.
(56) If $m \leqslant n$ and $1<i$ and $i+1<$ width $\operatorname{Gauge}(D, m)$, then $1<2^{n-^{\prime} m}$. $(i-1)+2$ and $2^{n-^{\prime} m} \cdot(i-1)+2 \leqslant \operatorname{width} \operatorname{Gauge}(D, n)$.
(57) If $1 \leqslant i$ and $i \leqslant$ len Gauge (D, n) and $1 \leqslant j$ and $j \leqslant$ len Gauge (D, m) and $n>0$ and $m>0$ or $n=0$ and $m=0$, then $\left((\operatorname{Gauge}(D, n))_{\text {Center Gauge }(D, n), i}\right)_{\mathbf{1}}=\left((\operatorname{Gauge}(D, m))_{\text {Center Gauge }(D, m), j}\right)_{\mathbf{1}}$.
(58) If $1 \leqslant i$ and $i \leqslant$ len Gauge (D, n) and $1 \leqslant j$ and $j \leqslant$ len Gauge (D, m) and $n>0$ and $m>0$ or $n=0$ and $m=0$, then $\left((\operatorname{Gauge}(D, n))_{i, \text { Center } \operatorname{Gauge}(D, n)}\right)_{\mathbf{2}}=\left((\operatorname{Gauge}(D, m))_{j, \text { Center } \operatorname{Gauge}(D, m)}\right)_{\mathbf{2}}$.
(59) If $1 \leqslant i$ and $i \leqslant$ len Gauge $(C, 1)$, then $\left((\operatorname{Gauge}(C, 1))_{\operatorname{Center} \operatorname{Gauge}(C, 1), i}\right)_{\mathbf{1}}=$ $\frac{\text { W-bound } C+\text { E-bound } C}{2}$.
(60) If $1 \leqslant i$ and $i \leqslant$ len Gauge $(C, 1)$, then $\left((\operatorname{Gauge}(C, 1))_{i, \text { Center Gauge }(C, 1)}\right)_{\mathbf{2}}=$ $\frac{\text { S-bound } C+\mathrm{N} \text {-bound } C}{2}$.
(61) If $1 \leqslant i$ and $i \leqslant \operatorname{len} \operatorname{Gauge}(E, n)$ and $1 \leqslant j$ and $j \leqslant$ len Gauge (E, m) and $m \leqslant n$, then $\left((\operatorname{Gauge}(E, n))_{i, \text { len Gauge }(E, n)}\right)_{2} \leqslant$ $\left((\operatorname{Gauge}(E, m))_{j, \text { len } \operatorname{Gauge}(E, m)}\right)_{\mathbf{2}}$.
(62) If $1 \leqslant i$ and $i \leqslant \operatorname{len} \operatorname{Gauge}(E, n)$ and $1 \leqslant j$ and $j \leqslant$ len Gauge (E, m) and $m \leqslant n$, then $\left((\operatorname{Gauge}(E, n))_{\text {len } \operatorname{Gauge}(E, n), i}\right)_{\mathbf{1}} \leqslant$ $\left((\operatorname{Gauge}(E, m))_{\text {len } \operatorname{Gauge}(E, m), j}\right)_{\mathbf{1}}$.
(63) If $1 \leqslant i$ and $i \leqslant$ len Gauge (E, n) and $1 \leqslant j$ and $j \leqslant$ len Gauge (E, m) and $m \leqslant n$, then $\left((\operatorname{Gauge}(E, m))_{1, j}\right)_{\mathbf{1}} \leqslant\left((\operatorname{Gauge}(E, n))_{1, i}\right)_{\mathbf{1}}$.
(64) If $1 \leqslant i$ and $i \leqslant \operatorname{len} \operatorname{Gauge}(E, n)$ and $1 \leqslant j$ and $j \leqslant$ len $\operatorname{Gauge}(E, m)$ and $m \leqslant n$, then $\left((\operatorname{Gauge}(E, m))_{j, 1}\right)_{\mathbf{2}} \leqslant\left((\operatorname{Gauge}(E, n))_{i, 1}\right)_{\mathbf{2}}$.
(65) If $1 \leqslant m$ and $m \leqslant n$, then $\mathcal{L}\left((\operatorname{Gauge}(E, n))_{\text {Center Gauge }(E, n), 1}\right.$,
(Gauge $\left.(E, n))_{\text {Center Gauge }(E, n), \text { len Gauge }(E, n)}\right) \subseteq$ $\mathcal{L}\left((\operatorname{Gauge}(E, m))_{\text {Center Gauge }(E, m), 1}\right.$,
(Gauge $\left.(E, m))_{\text {Center Gauge }(E, m), \text { len Gauge }(E, m)}\right)$.
(66) If $1 \leqslant m$ and $m \leqslant n$ and $1 \leqslant j$ and $j \leqslant$ width Gauge (E, n), then $\mathcal{L}\left((\operatorname{Gauge}(E, n))_{\text {Center Gauge }(E, n), 1},(\operatorname{Gauge}(E, n))_{\text {Center Gauge }(E, n), j}\right) \subseteq$ $\mathcal{L}\left((\operatorname{Gauge}(E, m))_{\text {Center Gauge }(E, m), 1},(\operatorname{Gauge}(E, n))_{\text {Center Gauge }(E, n), j}\right)$.
(67) If $1 \leqslant m$ and $m \leqslant n$ and $1 \leqslant j$ and $j \leqslant$ width $\operatorname{Gauge}(E, n)$, then $\mathcal{L}\left((\operatorname{Gauge}(E, m))_{\text {Center Gauge }(E, m), 1},(\operatorname{Gauge}(E, n))_{\text {Center Gauge }(E, n), j} \subseteq\right.$ $\mathcal{L}\left((\operatorname{Gauge}(E, m))_{\text {Center Gauge }(E, m), 1}\right.$,
$\left.(\text { Gauge }(E, m))_{\text {Center Gauge }(E, m), \text { len Gauge }(E, m)}\right)$.
(68) Suppose $m \leqslant n$ and $1<i$ and $i+1<$ len Gauge (E, m) and $1<j$ and $j+1<$ width $\operatorname{Gauge}(E, m)$. Let i_{1}, j_{1} be natural numbers. Suppose $2^{n-^{\prime} m} \cdot(i-2)+2 \leqslant i_{1}$ and $i_{1}<2^{n-^{\prime} m} \cdot(i-1)+2$ and $2^{n-^{\prime} m} \cdot(j-$ $2)+2 \leqslant j_{1}$ and $j_{1}<2^{n-^{\prime} m} \cdot(j-1)+2$. Then cell $\left(\operatorname{Gauge}(E, n), i_{1}, j_{1}\right) \subseteq$ cell(Gauge $(E, m), i, j)$.
(69) Suppose $m \leqslant n$ and $3 \leqslant i$ and $i<$ len Gauge (E, m) and $1<j$ and $j+1<$ width Gauge (E, m). Let i_{1}, j_{1} be natural numbers. If $i_{1}=2^{n-\prime m}$. $(i-2)+2$ and $j_{1}=2^{n-^{\prime} m} \cdot(j-2)+2$, then $\operatorname{cell}\left(\right.$ Gauge $\left.(E, n), i_{1}-^{\prime} 1, j_{1}\right) \subseteq$ cell(Gauge $\left.(E, m), i-^{\prime} 1, j\right)$.
(70) If $i \leqslant$ len Gauge (C, n), then cell(Gauge $(C, n), i, 0) \subseteq \mathrm{UBD} C$.
(71) If $i \leqslant$ len $\operatorname{Gauge}(E, n)$, then $\operatorname{cell}(\operatorname{Gauge}(E, n), i$, width $\operatorname{Gauge}(E, n)) \subseteq$ UBD E.

5. CAGES

The following propositions are true:
(72) If $p \in C$, then NorthHalfline p meets $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(73) If $p \in C$, then EastHalfline p meets $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(74) If $p \in C$, then SouthHalfline p meets $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(75) If $p \in C$, then WestHalfline p meets $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(76) There exist k, t such that $1 \leqslant k$ and $k<$ len Cage (C, n) and $1 \leqslant t$ and $t \leqslant$ width Gauge (C, n) and $(\operatorname{Cage}(C, n))_{k}=(\operatorname{Gauge}(C, n))_{1, t}$.
(77) There exist k, t such that $1 \leqslant k$ and $k<$ len Cage (C, n) and $1 \leqslant t$ and $t \leqslant$ len $\operatorname{Gauge}(C, n)$ and $(\operatorname{Cage}(C, n))_{k}=(\operatorname{Gauge}(C, n))_{t, 1}$.
(78) There exist k, t such that $1 \leqslant k$ and $k<$ len Cage (C, n) and $1 \leqslant t$ and $t \leqslant$ width Gauge (C, n) and $(\operatorname{Cage}(C, n))_{k}=(\operatorname{Gauge}(C, n))_{\operatorname{len} \operatorname{Gauge}(C, n), t}$.
(79) If $1 \leqslant k$ and $k \leqslant$ len Cage (C, n) and $1 \leqslant t$ and $t \leqslant$ len Gauge (C, n) and $(\operatorname{Cage}(C, n))_{k}=(\operatorname{Gauge}(C, n))_{t, \text { width Gauge }(C, n)}$, then $(\operatorname{Cage}(C, n))_{k} \in$ N-most $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(80) If $1 \leqslant k$ and $k \leqslant$ len Cage (C, n) and $1 \leqslant t$ and $t \leqslant$ width $\operatorname{Gauge}(C, n)$ and $(\operatorname{Cage}(C, n))_{k}=(\operatorname{Gauge}(C, n))_{1, t}$, then $(\text { Cage }(C, n))_{k} \in \mathrm{~W}-$ most $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(81) If $1 \leqslant k$ and $k \leqslant$ len Cage (C, n) and $1 \leqslant t$ and $t \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$ and $(\operatorname{Cage}(C, n))_{k}=(\operatorname{Gauge}(C, n))_{t, 1}$, then $(\operatorname{Cage}(C, n))_{k} \in \operatorname{S}-m o s t \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(82) If $1 \leqslant k$ and $k \leqslant$ len Cage (C, n) and $1 \leqslant t$ and $t \leqslant$ width Gauge (C, n) and $(\operatorname{Cage}(C, n))_{k}=(\operatorname{Gauge}(C, n))_{\operatorname{len} \operatorname{Gauge}(C, n), t}$, then $(\operatorname{Cage}(C, n))_{k} \in$ E-most $\widetilde{\mathcal{L}}($ Cage $(C, n))$.
(83) W-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=\mathrm{W}$-bound $C-\frac{\mathrm{E} \text {-bound } C-\mathrm{W} \text {-bound } C}{2^{n}}$.
(84) S-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=\mathrm{S}$-bound $C-\frac{\mathrm{N} \text {-bound } C-\mathrm{S} \text {-bound } C}{2^{n}}$.
(85) E-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=$ E-bound $C+\frac{\text { E-bound } C-\text { W-bound } C}{2^{n}}$.
(86) $\quad \mathrm{N}$-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))+$ S-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=\mathrm{N}$-bound $\widetilde{\mathcal{L}}($ Cage $(C$, $m))+$ S-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, m))$.
(87) E-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))+\mathrm{W}$-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=$ E-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C$, $m))+\mathrm{W}$-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, m))$.
(88) If $i<j$, then E-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, j))<$ E-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, i))$.
(89) If $i<j$, then W-bound $\widetilde{\mathcal{L}}($ Cage $(C, i))<$ W-bound $\widetilde{\mathcal{L}}($ Cage $(C, j))$.
(90) If $i<j$, then S-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, i))<$ S-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, j))$.
(91) If $1 \leqslant i$ and $i \leqslant \operatorname{len} \operatorname{Gauge}(C, n)$, then N -bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=$ $\left((\operatorname{Gauge}(C, n))_{i, \text { len }} \text { Gauge }(C, n)\right)_{\mathbf{2}}$.
(92) If $1 \leqslant i$ and $i \leqslant$ len Gauge (C, n), then E-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=$ $\left((\text { Gauge }(C, n))_{\text {len Gauge }(C, n), i}\right)_{1}$.
(93) If $1 \leqslant i$ and $i \leqslant$ len Gauge (C, n), then $\operatorname{S-bound} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=$ $\left((\text { Gauge }(C, n))_{i, 1}\right)_{\mathbf{2}}$.
(94) If $1 \leqslant i$ and $i \leqslant$ len Gauge (C, n), then W-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=$ $\left((\operatorname{Gauge}(C, n))_{1, i}\right)_{\mathbf{1}}$.
(95) If $x \in C$ and $p \in$ NorthHalfline $x \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$, then $p_{\mathbf{2}}>x_{\mathbf{2}}$.
(96) If $x \in C$ and $p \in$ EastHalfline $x \cap \widetilde{\mathcal{L}}($ Cage $(C, n))$, then $p_{1}>x_{1}$.
(97) If $x \in C$ and $p \in$ SouthHalfline $x \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$, then $p_{\mathbf{2}}<x_{\mathbf{2}}$.
(98) If $x \in C$ and $p \in$ WestHalfline $x \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$, then $p_{\mathbf{1}}<x_{\mathbf{1}}$.
(99) If $x \in \mathrm{~N}-$ most C and $p \in$ NorthHalfline x and $1 \leqslant i$ and $i<$ len Cage (C, n) and $p \in \mathcal{L}(\operatorname{Cage}(C, n), i)$, then $\mathcal{L}(\operatorname{Cage}(C, n), i)$ is horizontal.
(100) If $x \in \mathrm{E}$-most C and $p \in$ EastHalfline x and $1 \leqslant i$ and $i<$ len Cage (C, n) and $p \in \mathcal{L}(\operatorname{Cage}(C, n), i)$, then $\mathcal{L}(\operatorname{Cage}(C, n), i)$ is vertical.
(101) If $x \in \operatorname{S-most} C$ and $p \in$ SouthHalfline x and $1 \leqslant i$ and $i<\operatorname{len}$ Cage (C, n) and $p \in \mathcal{L}(\operatorname{Cage}(C, n), i)$, then $\mathcal{L}(\operatorname{Cage}(C, n), i)$ is horizontal.
(102) If $x \in \mathrm{~W}-\operatorname{most} C$ and $p \in$ WestHalfline x and $1 \leqslant i$ and $i<$ len Cage (C, n) and $p \in \mathcal{L}(\operatorname{Cage}(C, n), i)$, then $\mathcal{L}(\operatorname{Cage}(C, n), i)$ is vertical.
(103) If $x \in \mathrm{~N}$-most C and $p \in \operatorname{NorthHalfline} x \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$, then $p_{2}=$ N-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(104) If $x \in \underset{\widetilde{\mathcal{L}}}{\mathrm{E}}$-most C and $p \in \operatorname{EastHalfline} x \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$, then $p_{\mathbf{1}}=$ E-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(105) If $x \in \operatorname{S-most} C$ and $p \in \operatorname{SouthHalfline} x \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$, then $p_{2}=$ S-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(106) If $x \in \mathrm{~W}$-most C and $p \in$ WestHalfline $x \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$, then $p_{1}=$ W-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(107) If $x \in \mathrm{~N}-\operatorname{most} C$, then there exists a point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that NorthHalfline $x \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=\{p\}$.
(108) If $x \in \mathrm{E}-$ most C, then there exists a point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that EastHalfline $x \cap \widetilde{\mathcal{L}}($ Cage $(C, n))=\{p\}$.
(109) If $x \in \mathrm{~S}$-most C, then there exists a point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that SouthHalfline $x \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=\{p\}$.
(110) If $x \in \mathrm{~W}$-most C, then there exists a point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that WestHalfline $x \cap \widetilde{\mathcal{L}}($ Cage $(C, n))=\{p\}$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25-27, 1999.
[7] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[8] Czesław Byliński and Mariusz Żynel. Cages - the external approximation of Jordan’s curve. Formalized Mathematics, 9(1):19-24, 2001.
[9] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[11] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[12] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Formalized Mathematics, 2(5):663-664, 1991.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[15] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573-577, 1997.
[16] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[17] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[18] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[19] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[20] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
[21] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[22] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. Formalized Mathematics, 6(4):563-572, 1997.
[23] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.
[24] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[25] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[26] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[27] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[28] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[29] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, $5(3): 317-322,1996$.
[30] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[32] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[33] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[^0]: ${ }^{1}$ This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

