Gauges and Cages. Part I^1

Artur Korniłowicz University of Białystok Robert Milewski University of Białystok

Adam Naumowicz University of Białystok Andrzej Trybulec University of Białystok

MML Identifier: JORDAN1A.

The notation and terminology used in this paper have been introduced in the following articles: [28], [24], [32], [9], [25], [10], [2], [3], [30], [29], [4], [5], [18], [21], [23], [22], [6], [8], [14], [1], [19], [26], [7], [27], [13], [33], [17], [16], [20], [31], [11], [12], and [15].

1. Preliminaries

For simplicity, we use the following convention: $i, i_1, i_2, j, j_1, j_2, k, m, n, t$ denote natural numbers, D denotes a non empty subset of \mathcal{E}_T^2 , E denotes a compact non vertical non horizontal subset of \mathcal{E}_T^2 , C denotes a compact connected non vertical non horizontal subset of \mathcal{E}_T^2 , G denotes a Go-board, p, q, x denote points of \mathcal{E}_T^2 , and r, s denote real numbers.

The following propositions are true:

- (1) For all real numbers s_1 , s_3 , s_4 , l such that $s_1 \leq s_3$ and $s_1 \leq s_4$ and $0 \leq l$ and $l \leq 1$ holds $s_1 \leq (1-l) \cdot s_3 + l \cdot s_4$.
- (2) For all real numbers s_1 , s_3 , s_4 , l such that $s_3 \leq s_1$ and $s_4 \leq s_1$ and $0 \leq l$ and $l \leq 1$ holds $(1-l) \cdot s_3 + l \cdot s_4 \leq s_1$.
- (3) If n > 0, then $m^n \mod m = 0$.
- (4) If j > 0 and $i \mod j = 0$, then $i \div j = \frac{i}{j}$.
- (5) If n > 0, then $i^n \div i = \frac{i^n}{i}$.

C 2001 University of Białystok ISSN 1426-2630

¹This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

- (6) If 0 < n and 1 < r, then $1 < r^n$.
- (7) If r > 1 and m > n, then $r^m > r^n$.
- (8) Let T be a non empty topological space, A be a subset of T, and B, C be subsets of the carrier of T. If A is connected and C is a component of B and A ∩ C ≠ Ø and A ⊆ B, then A ⊆ C.

Let f be a finite sequence. The functor Center f yields a natural number and is defined as follows:

(Def. 1) Center $f = (\text{len } f \div 2) + 1$.

The following two propositions are true:

- (9) For every finite sequence f such that len f is odd holds len $f = 2 \cdot Center f 1$.
- (10) For every finite sequence f such that len f is even holds len $f = 2 \cdot \text{Center } f 2$.

2. Some Subsets of the Plane

One can check the following observations:

- * there exists a subset of \mathcal{E}_T^2 which is compact, non vertical, non horizontal, and non empty and satisfies conditions of simple closed curve,
- * there exists a subset of \mathcal{E}_T^2 which is compact, non empty, and horizontal, and

* there exists a subset of \mathcal{E}_{T}^{2} which is compact, non empty, and vertical.

The following propositions are true:

- (11) If $p \in \text{N-most } D$, then $p_2 = \text{N-bound } D$.
- (12) If $p \in \text{E-most } D$, then $p_1 = \text{E-bound } D$.
- (13) If $p \in$ S-most D, then $p_2 =$ S-bound D.
- (14) If $p \in W$ -most D, then $p_1 = W$ -bound D.
- (15) BDD D misses D.
- (16) For every compact non empty subset S of $\mathcal{E}^2_{\mathrm{T}}$ satisfying conditions of simple closed curve holds LowerArc $S \subseteq S$ and UpperArc $S \subseteq S$.
- (17) $p \in \text{VerticalLine } p_1.$
- (18) $[r, s] \in \text{VerticalLine } r.$
- (19) For every subset A of $\mathcal{E}^2_{\mathrm{T}}$ such that $A \subseteq \operatorname{VerticalLine} s$ holds A is vertical.
- (20) (proj2)([r, s]) = s and (proj1)([r, s]) = r.
- (21) If $p_1 = q_1$ and $r \in [(\text{proj}2)(p), (\text{proj}2)(q)]$, then $[p_1, r] \in \mathcal{L}(p, q)$.
- (22) If $p_2 = q_2$ and $r \in [(\text{proj1})(p), (\text{proj1})(q)]$, then $[r, p_2] \in \mathcal{L}(p, q)$.

502

(23) If $p \in \text{VerticalLine } s$ and $q \in \text{VerticalLine } s$, then $\mathcal{L}(p,q) \subseteq \text{VerticalLine } s$.

Let S be a non empty subset of \mathcal{E}_{T}^{2} satisfying conditions of simple closed curve. Observe that LowerArc S is non empty and compact and UpperArc S is non empty and compact.

We now state several propositions:

- (24) For all subsets A, B of $\mathcal{E}_{\mathrm{T}}^2$ such that A meets B holds (proj2)°A meets (proj2)°B.
- (25) For all subsets A, B of \mathcal{E}^2_T such that A misses B and $A \subseteq$ VerticalLine s and $B \subseteq$ VerticalLine s holds (proj2)°A misses (proj2)°B.
- (26) For every closed subset S of $\mathcal{E}^2_{\mathrm{T}}$ such that S is Bounded holds (proj2)°S is closed.
- (27) For every subset S of $\mathcal{E}^2_{\mathrm{T}}$ such that S is Bounded holds (proj2)°S is bounded.
- (28) For every compact subset S of $\mathcal{E}_{\mathrm{T}}^2$ holds (proj2)°S is compact.

In this article we present several logical schemes. The scheme TRSubsetEx deals with a natural number \mathcal{A} and a unary predicate \mathcal{P} , and states that:

There exists a subset A of $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$ such that for every point p of $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$ holds $p \in A$ iff $\mathcal{P}[p]$

for all values of the parameters.

The scheme TRSubsetUniq deals with a natural number \mathcal{A} and a unary predicate \mathcal{P} , and states that:

Let A, B be subsets of $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$. Suppose for every point p of $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$ holds $p \in A$ iff $\mathcal{P}[p]$ and for every point p of $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$ holds $p \in B$ iff $\mathcal{P}[p]$. Then A = B

for all values of the parameters.

Let p be a point of $\mathcal{E}_{\mathrm{T}}^2$. The functor NorthHalfline p yielding a subset of $\mathcal{E}_{\mathrm{T}}^2$ is defined as follows:

- (Def. 2) For every point x of \mathcal{E}_{T}^{2} holds $x \in \text{NorthHalfline } p$ iff $x_{1} = p_{1}$ and $x_{2} \ge p_{2}$. The functor EastHalfline p yielding a subset of \mathcal{E}_{T}^{2} is defined as follows:
- (Def. 3) For every point x of $\mathcal{E}_{\mathrm{T}}^2$ holds $x \in \mathrm{EastHalfline} p$ iff $x_1 \ge p_1$ and $x_2 = p_2$. The functor SouthHalfline p yielding a subset of $\mathcal{E}_{\mathrm{T}}^2$ is defined as follows:
- (Def. 4) For every point x of \mathcal{E}_{T}^{2} holds $x \in$ SouthHalfline p iff $x_{1} = p_{1}$ and $x_{2} \leq p_{2}$. The functor WestHalfline p yields a subset of \mathcal{E}_{T}^{2} and is defined by:
- (Def. 5) For every point x of \mathcal{E}_{T}^{2} holds $x \in \text{WestHalfline } p$ iff $x_{1} \leq p_{1}$ and $x_{2} = p_{2}$. The following propositions are true:
 - (29) NorthHalfline $p = \{q; q \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: q_1 = p_1 \land q_2 \ge p_2 \}.$
 - (30) NorthHalfline $p = \{ [p_1, r]; r \text{ ranges over elements of } \mathbb{R}: r \ge p_2 \}.$
 - (31) EastHalfline $p = \{q; q \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: q_1 \ge p_1 \land q_2 = p_2 \}.$

ARTUR KORNIŁOWICZ et al.

- (32) EastHalfline $p = \{[r, p_2]; r \text{ ranges over elements of } \mathbb{R}: r \ge p_1\}.$
- (33) SouthHalfline $p = \{q; q \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: q_1 = p_1 \land q_2 \leq p_2 \}.$
- (34) SouthHalfline $p = \{ [p_1, r]; r \text{ ranges over elements of } \mathbb{R}: r \leq p_2 \}.$
- (35) WestHalfline $p = \{q; q \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: q_1 \leq p_1 \land q_2 = p_2 \}.$
- (36) WestHalfline $p = \{[r, p_2]; r \text{ ranges over elements of } \mathbb{R}: r \leq p_1\}.$

Let p be a point of $\mathcal{E}^2_{\mathrm{T}}$. One can check the following observations:

- * NorthHalfline p is non empty and convex,
- * EastHalfline p is non empty and convex,
- * SouthHalfline p is non empty and convex, and
- * WestHalfline p is non empty and convex.

3. Goboards

We now state a number of propositions:

- (37) If $1 \leq i$ and $i \leq \operatorname{len} G$ and $1 \leq j$ and $j \leq \operatorname{width} G$, then $G_{i,j} \in \mathcal{L}(G_{i,1}, G_{i,\operatorname{width} G})$.
- (38) If $1 \leq i$ and $i \leq \operatorname{len} G$ and $1 \leq j$ and $j \leq \operatorname{width} G$, then $G_{i,j} \in \mathcal{L}(G_{1,j}, G_{\operatorname{len} G,j})$.
- (39) If $1 \leq j_1$ and $j_1 \leq \text{width } G$ and $1 \leq j_2$ and $j_2 \leq \text{width } G$ and $1 \leq i_1$ and $i_1 \leq i_2$ and $i_2 \leq \text{len } G$, then $(G_{i_1,j_1})_1 \leq (G_{i_2,j_2})_1$.
- (40) If $1 \leq i_1$ and $i_1 \leq \text{len } G$ and $1 \leq i_2$ and $i_2 \leq \text{len } G$ and $1 \leq j_1$ and $j_1 \leq j_2$ and $j_2 \leq \text{width } G$, then $(G_{i_1,j_1})_2 \leq (G_{i_2,j_2})_2$.
- (41) Let f be a non constant standard special circular sequence. Suppose f is a sequence which elements belong to G and $1 \leq t$ and $t \leq \text{len } G$. Then $(G_{t,\text{width }G})_{2} \geq \text{N-bound } \widetilde{\mathcal{L}}(f)$.
- (42) Let f be a non constant standard special circular sequence. Suppose f is a sequence which elements belong to G and $1 \leq t$ and $t \leq$ width G. Then $(G_{1,t})_1 \leq$ W-bound $\widetilde{\mathcal{L}}(f)$.
- (43) Let f be a non constant standard special circular sequence. Suppose f is a sequence which elements belong to G and $1 \leq t$ and $t \leq \text{len } G$. Then $(G_{t,1})_2 \leq \text{S-bound } \widetilde{\mathcal{L}}(f)$.
- (44) Let f be a non constant standard special circular sequence. Suppose f is a sequence which elements belong to G and $1 \leq t$ and $t \leq$ width G. Then $(G_{\text{len }G,t})_1 \geq \text{E-bound } \widetilde{\mathcal{L}}(f).$
- (45) If $i \leq \text{len } G$ and $j \leq \text{width } G$, then cell(G, i, j) is non empty.
- (46) If $i \leq \text{len } G$ and $j \leq \text{width } G$, then cell(G, i, j) is connected.
- (47) If $i \leq \text{len } G$, then cell(G, i, 0) is not Bounded.

(48) If $i \leq \text{len } G$, then cell(G, i, width G) is not Bounded.

4. Gauges

One can prove the following propositions:

- (49) width $Gauge(D, n) = 2^n + 3$.
- (50) If i < j, then len Gauge(D, i) < len Gauge(D, j).
- (51) If $i \leq j$, then len Gauge $(D, i) \leq \text{len Gauge}(D, j)$.
- (52) If $m \le n$ and 1 < i and i < len Gauge(D, m), then $1 < 2^{n-m} \cdot (i-2) + 2$ and $2^{n-m} \cdot (i-2) + 2 < \text{len Gauge}(D, n)$.
- (53) If $m \leq n$ and 1 < i and i < width Gauge(D, m), then $1 < 2^{n-m} \cdot (i-2) + 2$ and $2^{n-m} \cdot (i-2) + 2 < \text{width Gauge}(D, n)$.
- (54) Suppose $m \leq n$ and 1 < i and i < len Gauge(D, m) and 1 < j and j < width Gauge(D, m). Let i_1, j_1 be natural numbers. If $i_1 = 2^{n-'m} \cdot (i-2) + 2$ and $j_1 = 2^{n-'m} \cdot (j-2) + 2$, then $(\text{Gauge}(D, m))_{i,j} = (\text{Gauge}(D, n))_{i_1,j_1}$.
- (55) If $m \leq n$ and 1 < i and i+1 < len Gauge(D, m), then $1 < 2^{n-m} \cdot (i-1) + 2$ and $2^{n-m} \cdot (i-1) + 2 \leq \text{len Gauge}(D, n)$.
- (56) If $m \leq n$ and 1 < i and i + 1 < width Gauge(D, m), then $1 < 2^{n-m} \cdot (i-1) + 2$ and $2^{n-m} \cdot (i-1) + 2 \leq \text{width } \text{Gauge}(D, n)$.
- (57) If $1 \leq i$ and $i \leq \text{len} \text{Gauge}(D, n)$ and $1 \leq j$ and $j \leq \text{len} \text{Gauge}(D, m)$ and n > 0 and m > 0 or n = 0 and m = 0, then $((\text{Gauge}(D, n))_{\text{Center} \text{Gauge}(D, n), i})_1 = ((\text{Gauge}(D, m))_{\text{Center} \text{Gauge}(D, m), j})_1.$
- (58) If $1 \leq i$ and $i \leq \text{len} \operatorname{Gauge}(D, n)$ and $1 \leq j$ and $j \leq \text{len} \operatorname{Gauge}(D, m)$ and n > 0 and m > 0 or n = 0 and m = 0, then $((\operatorname{Gauge}(D, n))_{i,\operatorname{Center} \operatorname{Gauge}(D, n))_2 = ((\operatorname{Gauge}(D, m))_{j,\operatorname{Center} \operatorname{Gauge}(D, m))_2.$
- (59) If $1 \leq i$ and $i \leq \text{len Gauge}(C, 1)$, then $((\text{Gauge}(C, 1))_{\text{Center Gauge}(C, 1), i})_{\mathbf{1}} = \frac{W-\text{bound }C+E-\text{bound }C}{2}$.
- (60) If $1 \leq i$ and $i \leq \text{len Gauge}(C, 1)$, then $((\text{Gauge}(C, 1))_{i,\text{Center Gauge}(C, 1)})_2 = \frac{S-\text{bound }C+N-\text{bound }C}{2}$.
- (61) If $1 \leq i$ and $i \leq \text{len Gauge}(E, n)$ and $1 \leq j$ and $j \leq \text{len Gauge}(E, m)$ and $m \leq n$, then $((\text{Gauge}(E, n))_{i, \text{len Gauge}(E, n)})_2 \leq ((\text{Gauge}(E, m))_{j, \text{len Gauge}(E, m)})_2.$
- (62) If $1 \leq i$ and $i \leq \text{len Gauge}(E, n)$ and $1 \leq j$ and $j \leq \text{len Gauge}(E, m)$ and $m \leq n$, then $((\text{Gauge}(E, n))_{\text{len Gauge}(E,n),i})_1 \leq ((\text{Gauge}(E, m))_{\text{len Gauge}(E,m),j})_1$.
- (63) If $1 \leq i$ and $i \leq \text{len Gauge}(E, n)$ and $1 \leq j$ and $j \leq \text{len Gauge}(E, m)$ and $m \leq n$, then $((\text{Gauge}(E, m))_{1,j})_1 \leq ((\text{Gauge}(E, n))_{1,i})_1$.

ARTUR KORNIŁOWICZ et al.

- (64) If $1 \leq i$ and $i \leq \text{len Gauge}(E, n)$ and $1 \leq j$ and $j \leq \text{len Gauge}(E, m)$ and $m \leq n$, then $((\text{Gauge}(E, m))_{j,1})_2 \leq ((\text{Gauge}(E, n))_{i,1})_2$.
- (65) If $1 \leq m$ and $m \leq n$, then $\mathcal{L}((\operatorname{Gauge}(E, n))_{\operatorname{Center Gauge}(E,n),1}, (\operatorname{Gauge}(E, n))_{\operatorname{Center Gauge}(E,n),\operatorname{len Gauge}(E,n)}) \subseteq \mathcal{L}((\operatorname{Gauge}(E, m))_{\operatorname{Center Gauge}(E,m),1}, (\operatorname{Gauge}(E, m))_{\operatorname{Center Gauge}(E,m),\operatorname{len Gauge}(E,m)}).$
- (66) If $1 \leq m$ and $m \leq n$ and $1 \leq j$ and $j \leq \text{width Gauge}(E,n)$, then $\mathcal{L}((\text{Gauge}(E,n))_{\text{Center Gauge}(E,n),1}, (\text{Gauge}(E,n))_{\text{Center Gauge}(E,n),j}) \subseteq \mathcal{L}((\text{Gauge}(E,m))_{\text{Center Gauge}(E,m),1}, (\text{Gauge}(E,n))_{\text{Center Gauge}(E,n),j}).$
- (67) If $1 \leq m$ and $m \leq n$ and $1 \leq j$ and $j \leq \text{width Gauge}(E, n)$, then $\mathcal{L}((\text{Gauge}(E, m))_{\text{Center Gauge}(E,m),1}, (\text{Gauge}(E, n))_{\text{Center Gauge}(E,n),j}) \subseteq$ $\mathcal{L}((\text{Gauge}(E, m))_{\text{Center Gauge}(E,m),1}, (\text{Gauge}(E, m))_{\text{Center Gauge}(E,m),l}).$
- (68) Suppose $m \leq n$ and 1 < i and i+1 < len Gauge(E,m) and 1 < jand j+1 < width Gauge(E,m). Let i_1, j_1 be natural numbers. Suppose $2^{n-'m} \cdot (i-2) + 2 \leq i_1$ and $i_1 < 2^{n-'m} \cdot (i-1) + 2$ and $2^{n-'m} \cdot (j-2) + 2 \leq j_1$ and $j_1 < 2^{n-'m} \cdot (j-1) + 2$. Then $\text{cell}(\text{Gauge}(E,n), i_1, j_1) \subseteq$ cell(Gauge(E,m), i, j).
- (69) Suppose $m \leq n$ and $3 \leq i$ and i < len Gauge(E,m) and 1 < j and j+1 < width Gauge(E,m). Let i_1, j_1 be natural numbers. If $i_1 = 2^{n-'m} \cdot (i-2) + 2$ and $j_1 = 2^{n-'m} \cdot (j-2) + 2$, then $\text{cell}(\text{Gauge}(E,n), i_1 '1, j_1) \subseteq \text{cell}(\text{Gauge}(E,m), i '1, j)$.
- (70) If $i \leq \text{len Gauge}(C, n)$, then $\text{cell}(\text{Gauge}(C, n), i, 0) \subseteq \text{UBD } C$.
- (71) If $i \leq \text{len Gauge}(E, n)$, then $\text{cell}(\text{Gauge}(E, n), i, \text{width Gauge}(E, n)) \subseteq \text{UBD } E$.

5. Cages

The following propositions are true:

- (72) If $p \in C$, then NorthHalfline p meets $\mathcal{L}(\text{Cage}(C, n))$.
- (73) If $p \in C$, then EastHalfline p meets $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
- (74) If $p \in C$, then SouthHalfline p meets $\mathcal{L}(\text{Cage}(C, n))$.
- (75) If $p \in C$, then WestHalfline p meets $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
- (76) There exist k, t such that $1 \leq k$ and k < len Cage(C, n) and $1 \leq t$ and $t \leq \text{width Gauge}(C, n)$ and $(\text{Cage}(C, n))_k = (\text{Gauge}(C, n))_{1,t}$.
- (77) There exist k, t such that $1 \le k$ and k < len Cage(C, n) and $1 \le t$ and $t \le \text{len Gauge}(C, n)$ and $(\text{Cage}(C, n))_k = (\text{Gauge}(C, n))_{t,1}$.
- (78) There exist k, t such that $1 \leq k$ and k < len Cage(C, n) and $1 \leq t$ and $t \leq \text{width Gauge}(C, n)$ and $(\text{Cage}(C, n))_k = (\text{Gauge}(C, n))_{\text{len Gauge}(C, n), t}$.

506

- (79) If $1 \leq k$ and $k \leq \text{len Cage}(C, n)$ and $1 \leq t$ and $t \leq \text{len Gauge}(C, n)$ and $(\text{Cage}(C, n))_k = (\text{Gauge}(C, n))_{t, \text{width Gauge}(C, n)}$, then $(\text{Cage}(C, n))_k \in \mathbb{N}$ -most $\widetilde{\mathcal{L}}(\text{Cage}(C, n))$.
- (80) If $1 \leq k$ and $k \leq \text{len} \text{Cage}(C, n)$ and $1 \leq t$ and $t \leq \text{width} \text{Gauge}(C, n)$ and $(\text{Cage}(C, n))_k = (\text{Gauge}(C, n))_{1,t}$, then $(\text{Cage}(C, n))_k \in \text{W-most} \widetilde{\mathcal{L}}(\text{Cage}(C, n)).$
- (81) If $1 \leq k$ and $k \leq \text{len} \text{Cage}(C, n)$ and $1 \leq t$ and $t \leq \text{len} \text{Gauge}(C, n)$ and $(\text{Cage}(C, n))_k = (\text{Gauge}(C, n))_{t,1}$, then $(\text{Cage}(C, n))_k \in \text{S-most} \widetilde{\mathcal{L}}(\text{Cage}(C, n)).$
- (82) If $1 \leq k$ and $k \leq \text{len Cage}(C, n)$ and $1 \leq t$ and $t \leq \text{width Gauge}(C, n)$ and $(\text{Cage}(C, n))_k = (\text{Gauge}(C, n))_{\text{len Gauge}(C, n), t}$, then $(\text{Cage}(C, n))_k \in \text{E-most } \widetilde{\mathcal{L}}(\text{Cage}(C, n))$.
- (83) W-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) = \operatorname{W-bound} C \frac{\operatorname{E-bound} C \operatorname{W-bound} C}{2^n}$.
- (84) S-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) = \operatorname{S-bound} C \frac{\operatorname{N-bound} C \operatorname{S-bound} C}{2^n}$.
- (85) E-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) = \operatorname{E-bound} C + \frac{\operatorname{E-bound} C \operatorname{W-bound} C}{2^n}$.
- (86) N-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) + \operatorname{S-bound} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) = \operatorname{N-bound} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, m)) + \operatorname{S-bound} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, m)).$
- (87) E-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$ +W-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$ = E-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, m))$ +W-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, m))$.
- (88) If i < j, then E-bound $\mathcal{L}(\operatorname{Cage}(C, j)) < \operatorname{E-bound} \mathcal{L}(\operatorname{Cage}(C, i))$.
- (89) If i < j, then W-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, i)) < \operatorname{W-bound} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, j))$.
- (90) If i < j, then S-bound $\mathcal{L}(\operatorname{Cage}(C, i)) < \operatorname{S-bound} \mathcal{L}(\operatorname{Cage}(C, j))$.
- (91) If $1 \leq i$ and $i \leq \text{len Gauge}(C, n)$, then N-bound $\widetilde{\mathcal{L}}(\text{Cage}(C, n)) = ((\text{Gauge}(C, n))_{i, \text{len Gauge}(C, n)})_2$.
- (92) If $1 \leq i$ and $i \leq \text{len Gauge}(C, n)$, then E-bound $\widetilde{\mathcal{L}}(\text{Cage}(C, n)) = ((\text{Gauge}(C, n))_{\text{len Gauge}(C, n), i})_1$.
- (93) If $1 \leq i$ and $i \leq \text{len Gauge}(C, n)$, then S-bound $\mathcal{L}(\text{Cage}(C, n)) = ((\text{Gauge}(C, n))_{i,1})_2$.
- (94) If $1 \leq i$ and $i \leq \text{len Gauge}(C, n)$, then W-bound $\mathcal{L}(\text{Cage}(C, n)) = ((\text{Gauge}(C, n))_{1,i})_{\mathbf{1}}$.
- (95) If $x \in C$ and $p \in \text{NorthHalfline } x \cap \mathcal{L}(\text{Cage}(C, n))$, then $p_2 > x_2$.
- (96) If $x \in C$ and $p \in \text{EastHalfline } x \cap \widetilde{\mathcal{L}}(\text{Cage}(C, n))$, then $p_1 > x_1$.
- (97) If $x \in C$ and $p \in \text{SouthHalfline } x \cap \widetilde{\mathcal{L}}(\text{Cage}(C, n))$, then $p_2 < x_2$.
- (98) If $x \in C$ and $p \in WestHalfline x \cap \mathcal{L}(Cage(C, n))$, then $p_1 < x_1$.
- (99) If $x \in \text{N-most } C$ and $p \in \text{NorthHalfline } x$ and $1 \leq i$ and i < len Cage(C, n) and $p \in \mathcal{L}(\text{Cage}(C, n), i)$, then $\mathcal{L}(\text{Cage}(C, n), i)$ is horizon-tal.

ARTUR KORNIŁOWICZ et al.

- (100) If $x \in \text{E-most } C$ and $p \in \text{EastHalfline } x$ and $1 \leq i$ and i < len Cage(C, n)and $p \in \mathcal{L}(\text{Cage}(C, n), i)$, then $\mathcal{L}(\text{Cage}(C, n), i)$ is vertical.
- (101) If $x \in \text{S-most } C$ and $p \in \text{SouthHalfline } x$ and $1 \leq i$ and i < len Cage(C, n)and $p \in \mathcal{L}(\text{Cage}(C, n), i)$, then $\mathcal{L}(\text{Cage}(C, n), i)$ is horizontal.
- (102) If $x \in W$ -most C and $p \in W$ estHalfline x and $1 \leq i$ and i <len Cage(C, n) and $p \in \mathcal{L}(Cage(C, n), i)$, then $\mathcal{L}(Cage(C, n), i)$ is vertical.
- (103) If $x \in \text{N-most } C$ and $p \in \text{NorthHalfline } x \cap \widetilde{\mathcal{L}}(\text{Cage}(C, n))$, then $p_2 = \text{N-bound } \widetilde{\mathcal{L}}(\text{Cage}(C, n))$.
- (104) If $x \in \text{E-most } C$ and $p \in \text{EastHalfline } x \cap \widetilde{\mathcal{L}}(\text{Cage}(C, n))$, then $p_1 = \text{E-bound } \widetilde{\mathcal{L}}(\text{Cage}(C, n))$.
- (105) If $x \in \text{S-most } C$ and $p \in \text{SouthHalfline } x \cap \widetilde{\mathcal{L}}(\text{Cage}(C, n))$, then $p_2 = \text{S-bound } \widetilde{\mathcal{L}}(\text{Cage}(C, n))$.
- (106) If $x \in W$ -most C and $p \in W$ estHalfline $x \cap \widetilde{\mathcal{L}}(\text{Cage}(C, n))$, then $p_1 = W$ -bound $\widetilde{\mathcal{L}}(\text{Cage}(C, n))$.
- (107) If $x \in \text{N-most} C$, then there exists a point p of $\mathcal{E}^2_{\mathrm{T}}$ such that NorthHalfline $x \cap \widetilde{\mathcal{L}}(\mathrm{Cage}(C, n)) = \{p\}.$
- (108) If $x \in \text{E-most } C$, then there exists a point p of $\mathcal{E}^2_{\mathrm{T}}$ such that EastHalfline $x \cap \widetilde{\mathcal{L}}(\mathrm{Cage}(C, n)) = \{p\}.$
- (109) If $x \in \text{S-most } C$, then there exists a point p of \mathcal{E}^2_T such that SouthHalfline $x \cap \widetilde{\mathcal{L}}(\text{Cage}(C, n)) = \{p\}.$
- (110) If $x \in W$ -most C, then there exists a point p of $\mathcal{E}_{\mathrm{T}}^2$ such that WestHalfline $x \cap \widetilde{\mathcal{L}}(\mathrm{Cage}(C, n)) = \{p\}.$

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [6] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25–27, 1999.
- [7] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Formalized Mathematics, 6(3):427–440, 1997.
- [8] Czesław Byliński and Mariusz Żynel. Cages the external approximation of Jordan's curve. Formalized Mathematics, 9(1):19–24, 2001.
- [9] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [11] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [12] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Simple closed curves. Formalized Mathematics, 2(5):663–664, 1991.

508

- [13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [15] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573–577, 1997.
- [16] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [17] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [18] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [19] Rafał Kwiatek. Factorial and Newton coefficients. *Formalized Mathematics*, 1(5):887–890, 1990.
- [20] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.
- [21] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [22] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. *Formalized Mathematics*, 6(4):563–572, 1997.
- [23] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. *Formalized Mathematics*, 8(1):1–13, 1999.
- [24] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [25] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [26] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [27] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [28] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.
- [29] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317–322, 1996.
- [30] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [32] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
 [32] Edmund Warnewigg Beletions and their basis properties. Formalized Mathematics.
- [33] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.

Received September 12, 2000