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Summary. We introduce the basic notions of ideal theory in rings. This
includes left and right ideals, (finitely) generated ideals and some operations on

ideals such as the addition of ideals and the radical of an ideal. In addition we

introduce linear combinations to formalize the well-known characterization of

generated ideals. Principal ideal domains and Noetherian rings are defined. The

latter development follows [3], pages 144–145.

MML Identifier: IDEAL 1.

The terminology and notation used here are introduced in the following articles:

[11], [18], [17], [20], [2], [23], [8], [4], [5], [15], [22], [19], [16], [21], [1], [13], [6],

[14], [12], [26], [24], [25], [9], [10], and [7].

1. Preliminaries

Let us note that there exists a non empty loop structure which is add-

associative, left zeroed, and right zeroed.

Let us observe that there exists a non empty double loop structure which is

Abelian, left zeroed, right zeroed, add-cancelable, well unital, add-associative,

associative, commutative, distributive, and non trivial.

One can prove the following proposition

1Partially supported by NSERC grant OGP9207.
2Partially supported by NSERC grant OGP9207.
3Partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

565
c© 2001 University of Białystok

ISSN 1426–2630



566 jonathan backer et al.

(1) Let V be an add-associative left zeroed right zeroed non empty loop

structure and v, u be elements of V . Then
∑〈v, u〉 = v + u.

2. Ideals

Let L be a non empty loop structure and let F be a subset of L. We say

that F is add closed if and only if:

(Def. 1) For all elements x, y of the carrier of L such that x ∈ F and y ∈ F holds

x + y ∈ F.

Let L be a non empty groupoid and let F be a subset of L. We say that F

is left ideal if and only if:

(Def. 2) For all elements p, x of the carrier of L such that x ∈ F holds p · x ∈ F.

We say that F is right ideal if and only if:

(Def. 3) For all elements p, x of the carrier of L such that x ∈ F holds x · p ∈ F.

Let L be a non empty loop structure. Observe that there exists a non empty

subset of L which is add closed.

Let L be a non empty groupoid. One can verify that there exists a non empty

subset of L which is left ideal and there exists a non empty subset of L which

is right ideal.

Let L be a non empty double loop structure. One can verify the following

observations:

∗ there exists a non empty subset of L which is add closed, left ideal, and
right ideal,

∗ there exists a non empty subset of L which is add closed and right ideal,
and

∗ there exists a non empty subset of L which is add closed and left ideal.
Let R be a commutative non empty groupoid. Observe that every non empty

subset of R which is left ideal is also right ideal and every non empty subset of

R which is right ideal is also left ideal.

Let L be a non empty double loop structure. An ideal of L is an add closed

left ideal right ideal non empty subset of L.

Let L be a non empty double loop structure. A right ideal of L is an add

closed right ideal non empty subset of L.

Let L be a non empty double loop structure. A left ideal of L is an add

closed left ideal non empty subset of L.

The following propositions are true:

(2) Let R be a right zeroed add-left-cancelable left distributive non empty

double loop structure and I be a left ideal non empty subset of R. Then

0R ∈ I.
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(3) Let R be a left zeroed add-right-cancelable right distributive non empty

double loop structure and I be a right ideal non empty subset of R. Then

0R ∈ I.

(4) For every right zeroed non empty double loop structure L holds {0L} is
add closed.

(5) Let L be a left zeroed add-right-cancelable right distributive non empty

double loop structure. Then {0L} is left ideal.
(6) Let L be a right zeroed add-left-cancelable left distributive non empty

double loop structure. Then {0L} is right ideal.
(7) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure. Then {0L} is an ideal of L.
(8) Let L be an add-associative right zeroed right complementable right

distributive non empty double loop structure. Then {0L} is a left ideal of
L.

(9) Let L be an add-associative right zeroed right complementable left di-

stributive non empty double loop structure. Then {0L} is a right ideal of
L.

(10) For every non empty double loop structure L holds the carrier of L is

an ideal of L.

(11) For every non empty double loop structure L holds the carrier of L is a

left ideal of L.

(12) For every non empty double loop structure L holds the carrier of L is a

right ideal of L.

Let R be a left zeroed right zeroed add-cancelable distributive non empty

double loop structure and let I be an ideal of R. Let us observe that I is trivial

if and only if:

(Def. 4) I = {0R}.
Let S be a 1-sorted structure and let T be a subset of S. We say that T is

proper if and only if:

(Def. 5) T 6= the carrier of S.
Let S be a non empty 1-sorted structure. Note that there exists a subset of

S which is proper.

Let R be a non trivial left zeroed right zeroed add-cancelable distributive

non empty double loop structure. One can check that there exists an ideal of R

which is proper.

The following propositions are true:

(13) Let L be an add-associative right zeroed right complementable left di-

stributive left unital non empty double loop structure, I be a left ideal

non empty subset of L, and x be an element of the carrier of L. If x ∈ I,

then −x ∈ I.
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(14) Let L be an add-associative right zeroed right complementable right

distributive right unital non empty double loop structure, I be a right

ideal non empty subset of L, and x be an element of the carrier of L. If

x ∈ I, then −x ∈ I.

(15) Let L be an add-associative right zeroed right complementable left di-

stributive left unital non empty double loop structure, I be a left ideal

of L, and x, y be elements of the carrier of L. If x ∈ I and y ∈ I, then

x− y ∈ I.

(16) Let L be an add-associative right zeroed right complementable right

distributive right unital non empty double loop structure, I be a right

ideal of L, and x, y be elements of the carrier of L. If x ∈ I and y ∈ I,

then x− y ∈ I.

(17) Let R be a left zeroed right zeroed add-cancelable add-associative di-

stributive non empty double loop structure, I be an add closed right ideal

non empty subset of R, a be an element of I, and n be a natural number.

Then n · a ∈ I.

(18) Let R be a unital left zeroed right zeroed add-cancelable associative

distributive non empty double loop structure, I be a right ideal non empty

subset of R, a be an element of I, and n be a natural number. If n 6= 0,

then an ∈ I.

Let R be a non empty loop structure and let I be an add closed non empty

subset of R. The functor add |(I, R) yielding a binary operation on I is defined

as follows:

(Def. 6) add |(I,R) = (the addition of R)↾[: I, I :].

Let R be a non empty groupoid and let I be a right ideal non empty subset

of R. The functor mult |(I, R) yielding a binary operation on I is defined as

follows:

(Def. 7) mult |(I, R) = (the multiplication of R)↾[: I, I :].

Let R be a non empty loop structure and let I be an add closed non empty

subset of R. The functor Gr(I,R) yields a non empty loop structure and is

defined by:

(Def. 8) Gr(I,R) = 〈I, add |(I, R), 0R(∈ I)〉.
Let R be a left zeroed right zeroed add-cancelable add-associative distribu-

tive non empty double loop structure and let I be an add closed non empty

subset of R. Note that Gr(I,R) is add-associative.

Let R be a left zeroed right zeroed add-cancelable add-associative distribu-

tive non empty double loop structure and let I be an add closed right ideal non

empty subset of R. Observe that Gr(I, R) is right zeroed.

Let R be an Abelian non empty double loop structure and let I be an add

closed non empty subset of R. Observe that Gr(I, R) is Abelian.
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Let R be an Abelian right unital left zeroed right zeroed right complemen-

table add-associative distributive non empty double loop structure and let I be

an add closed right ideal non empty subset of R. Note that Gr(I, R) is right

complementable.

We now state four propositions:

(19) Let R be a right unital non empty double loop structure and I be a left

ideal non empty subset of R. Then I is proper if and only if 1R /∈ I.

(20) Let R be a left unital right unital non empty double loop structure and

I be a right ideal non empty subset of R. Then I is proper if and only if

for every element u of R such that u is unital holds u /∈ I.

(21) Let R be a right unital non empty double loop structure and I be a left

ideal right ideal non empty subset of R. Then I is proper if and only if for

every element u of R such that u is unital holds u /∈ I.

(22) Let R be a non degenerated commutative ring. Then R is a field if and

only if for every ideal I of R holds I = {0R} or I = the carrier of R.

3. Linear Combinations

Let R be a non empty multiplicative loop structure and let A be a non empty

subset of the carrier of R. A finite sequence of elements of the carrier of R is

said to be a linear combination of A if:

(Def. 9) For every set i such that i ∈ dom it there exist elements u, v of R and

there exists an element a of A such that iti = u · a · v.

A finite sequence of elements of the carrier of R is said to be a left linear

combination of A if:

(Def. 10) For every set i such that i ∈ dom it there exists an element u of R and

there exists an element a of A such that iti = u · a.

A finite sequence of elements of the carrier of R is said to be a right linear

combination of A if:

(Def. 11) For every set i such that i ∈ dom it there exists an element u of R and

there exists an element a of A such that iti = a · u.

Let R be a non empty multiplicative loop structure and let A be a non empty

subset of the carrier of R. One can verify the following observations:

∗ there exists a linear combination of A which is non empty,
∗ there exists a left linear combination of A which is non empty, and
∗ there exists a right linear combination of A which is non empty.
Let R be a non empty multiplicative loop structure, let A, B be non empty

subsets of the carrier of R, let F be a linear combination of A, and let G be a

linear combination of B. Then F a G is a linear combination of A ∪B.
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One can prove the following three propositions:

(23) Let R be an associative non empty multiplicative loop structure, A be a

non empty subset of the carrier of R, a be an element of the carrier of R,

and F be a linear combination of A. Then a ·F is a linear combination of
A.

(24) Let R be an associative non empty multiplicative loop structure, A be a

non empty subset of the carrier of R, a be an element of the carrier of R,

and F be a linear combination of A. Then F · a is a linear combination of
A.

(25) Let R be a right unital non empty multiplicative loop structure and A be

a non empty subset of the carrier of R. Then every left linear combination

of A is a linear combination of A.

Let R be a non empty multiplicative loop structure, let A, B be non empty

subsets of the carrier of R, let F be a left linear combination of A, and let G be

a left linear combination of B. Then F aG is a left linear combination of A∪B.

One can prove the following three propositions:

(26) Let R be an associative non empty multiplicative loop structure, A be

a non empty subset of the carrier of R, a be an element of the carrier of

R, and F be a left linear combination of A. Then a · F is a left linear
combination of A.

(27) Let R be a non empty multiplicative loop structure, A be a non empty

subset of the carrier of R, a be an element of the carrier of R, and F be

a left linear combination of A. Then F · a is a linear combination of A.
(28) Let R be a left unital non empty multiplicative loop structure and A be a

non empty subset of the carrier of R. Then every right linear combination

of A is a linear combination of A.

Let R be a non empty multiplicative loop structure, let A, B be non empty

subsets of the carrier of R, let F be a right linear combination of A, and let G

be a right linear combination of B. Then F a G is a right linear combination of

A ∪B.

Next we state several propositions:

(29) Let R be an associative non empty multiplicative loop structure, A be

a non empty subset of the carrier of R, a be an element of the carrier of

R, and F be a right linear combination of A. Then F · a is a right linear
combination of A.

(30) Let R be an associative non empty multiplicative loop structure, A be

a non empty subset of the carrier of R, a be an element of the carrier

of R, and F be a right linear combination of A. Then a · F is a linear
combination of A.

(31) Let R be a commutative associative non empty multiplicative loop struc-
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ture and A be a non empty subset of the carrier of R. Then every linear

combination of A is a left linear combination of A and a right linear com-

bination of A.

(32) Let S be a non empty double loop structure, F be a non empty subset

of the carrier of S, and l1 be a non empty linear combination of F . Then

there exists a linear combination p of F and there exists an element e of

the carrier of S such that l1 = p a 〈e〉 and 〈e〉 is a linear combination of
F .

(33) Let S be a non empty double loop structure, F be a non empty subset of

the carrier of S, and l1 be a non empty left linear combination of F . Then

there exists a left linear combination p of F and there exists an element e

of the carrier of S such that l1 = pa〈e〉 and 〈e〉 is a left linear combination
of F .

(34) Let S be a non empty double loop structure, F be a non empty subset

of the carrier of S, and l1 be a non empty right linear combination of F .

Then there exists a right linear combination p of F and there exists an

element e of the carrier of S such that l1 = p a 〈e〉 and 〈e〉 is a right linear
combination of F .

Let R be a non empty multiplicative loop structure, let A be a non empty

subset of the carrier of R, let L be a linear combination of A, and let E be a

finite sequence of elements of [: the carrier of R, the carrier of R, the carrier of

R :]. We say that E represents L if and only if:

(Def. 12) lenE = lenL and for every set i such that i ∈ domL holds L(i) =

(Ei)1 · (Ei)2 · (Ei)3 and (Ei)2 ∈ A.

The following propositions are true:

(35) Let R be a non empty multiplicative loop structure, A be a non empty

subset of the carrier of R, and L be a linear combination of A. Then there

exists a finite sequence E of elements of [: the carrier of R, the carrier of

R, the carrier of R :] such that E represents L.

(36) Let R, S be non empty multiplicative loop structures, F be a non empty

subset of the carrier of R, l1 be a linear combination of F , G be a non

empty subset of the carrier of S, P be a function from the carrier of

R into the carrier of S, and E be a finite sequence of elements of [: the

carrier of R, the carrier of R, the carrier of R :]. Suppose P ◦F ⊆ G and

E represents l1. Then there exists a linear combination L1 of G such that

len l1 = lenL1 and for every set i such that i ∈ domL1 holds L1(i) =

P ((Ei)1) · P ((Ei)2) · P ((Ei)3).

Let R be a non empty multiplicative loop structure, let A be a non empty

subset of the carrier of R, let L be a left linear combination of A, and let E be a

finite sequence of elements of [: the carrier of R, the carrier of R :]. We say that
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E represents L if and only if:

(Def. 13) lenE = lenL and for every set i such that i ∈ domL holds L(i) =

(Ei)1 · (Ei)2 and (Ei)2 ∈ A.

One can prove the following two propositions:

(37) Let R be a non empty multiplicative loop structure, A be a non empty

subset of the carrier of R, and L be a left linear combination of A. Then

there exists a finite sequence E of elements of [: the carrier of R, the carrier

of R :] such that E represents L.

(38) Let R, S be non empty multiplicative loop structures, F be a non empty

subset of the carrier of R, l1 be a left linear combination of F , G be a non

empty subset of the carrier of S, P be a function from the carrier of R into

the carrier of S, and E be a finite sequence of elements of [: the carrier of

R, the carrier of R :]. Suppose P ◦F ⊆ G and E represents l1. Then there

exists a left linear combination L1 of G such that len l1 = lenL1 and for

every set i such that i ∈ domL1 holds L1(i) = P ((Ei)1) · P ((Ei)2).

Let R be a non empty multiplicative loop structure, let A be a non empty

subset of the carrier of R, let L be a right linear combination of A, and let E

be a finite sequence of elements of [: the carrier of R, the carrier of R :]. We say

that E represents L if and only if:

(Def. 14) lenE = lenL and for every set i such that i ∈ domL holds L(i) =

(Ei)1 · (Ei)2 and (Ei)1 ∈ A.

One can prove the following propositions:

(39) Let R be a non empty multiplicative loop structure, A be a non empty

subset of the carrier of R, and L be a right linear combination of A. Then

there exists a finite sequence E of elements of [: the carrier of R, the carrier

of R :] such that E represents L.

(40) Let R, S be non empty multiplicative loop structures, F be a non empty

subset of the carrier of R, l1 be a right linear combination of F , G be a non

empty subset of the carrier of S, P be a function from the carrier of R into

the carrier of S, and E be a finite sequence of elements of [: the carrier of

R, the carrier of R :]. Suppose P ◦F ⊆ G and E represents l1. Then there

exists a right linear combination L1 of G such that len l1 = lenL1 and for

every set i such that i ∈ domL1 holds L1(i) = P ((Ei)1) · P ((Ei)2).

(41) Let R be a non empty multiplicative loop structure, A be a non empty

subset of the carrier of R, l be a linear combination of A, and n be a

natural number. Then l↾Seg n is a linear combination of A.

(42) Let R be a non empty multiplicative loop structure, A be a non empty

subset of the carrier of R, l be a left linear combination of A, and n be a

natural number. Then l↾Seg n is a left linear combination of A.

(43) Let R be a non empty multiplicative loop structure, A be a non empty
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subset of the carrier of R, l be a right linear combination of A, and n be

a natural number. Then l↾Seg n is a right linear combination of A.

4. Generated Ideals

Let L be a non empty double loop structure and let F be a subset of the

carrier of L. Let us assume that F is non empty. The functor F–ideal yielding

an ideal of L is defined by:

(Def. 15) F ⊆ F–ideal and for every ideal I of L such that F ⊆ I holds F–ideal ⊆
I.

The functor F–left-ideal yields a left ideal of L and is defined by:

(Def. 16) F ⊆ F–left-ideal and for every left ideal I of L such that F ⊆ I holds

F–left-ideal ⊆ I.

The functor F–right-ideal yields a right ideal of L and is defined as follows:

(Def. 17) F ⊆ F–right-ideal and for every right ideal I of L such that F ⊆ I holds

F–right-ideal ⊆ I.

One can prove the following three propositions:

(44) For every non empty double loop structure L and for every ideal I of L

holds I–ideal = I.

(45) For every non empty double loop structure L and for every left ideal I

of L holds I–left-ideal = I.

(46) For every non empty double loop structure L and for every right ideal I

of L holds I–right-ideal = I.

Let L be a non empty double loop structure and let I be an ideal of L. A

non empty subset of L is said to be a basis of I if:

(Def. 18) It–ideal = I.

We now state a number of propositions:

(47) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure. Then {0L}–ideal = {0L}.
(48) For every left zeroed right zeroed add-cancelable distributive non empty

double loop structure L holds {0L}–ideal = {0L}.
(49) Let L be a left zeroed right zeroed add-right-cancelable right distributive

non empty double loop structure. Then {0L}–left-ideal = {0L}.
(50) For every right zeroed add-left-cancelable left distributive non empty

double loop structure L holds {0L}–right-ideal = {0L}.
(51) For every well unital non empty double loop structure L holds

{1L}–ideal = the carrier of L.
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(52) For every right unital non empty double loop structure L holds

{1L}–left-ideal = the carrier of L.
(53) For every left unital non empty double loop structure L holds

{1L}–right-ideal = the carrier of L.
(54) For every non empty double loop structure L holds ΩL–ideal = the

carrier of L.

(55) For every non empty double loop structure L holds ΩL–left-ideal = the

carrier of L.

(56) For every non empty double loop structure L holds ΩL–right-ideal = the

carrier of L.

(57) Let L be a non empty double loop structure and A, B be non empty

subsets of the carrier of L. If A ⊆ B, then A–ideal ⊆ B–ideal.

(58) Let L be a non empty double loop structure and A, B be non empty

subsets of the carrier of L. If A ⊆ B, then A–left-ideal ⊆ B–left-ideal.

(59) Let L be a non empty double loop structure and A, B be non empty

subsets of the carrier of L. If A ⊆ B, then A–right-ideal ⊆ B–right-ideal.

(60) Let L be an add-associative left zeroed right zeroed add-cancelable as-

sociative distributive well unital non empty double loop structure, F be a

non empty subset of the carrier of L, and x be a set. Then x ∈ F–ideal if

and only if there exists a linear combination f of F such that x =
∑

f.

(61) Let L be an add-associative left zeroed right zeroed add-cancelable asso-

ciative distributive well unital non empty double loop structure, F be a non

empty subset of the carrier of L, and x be a set. Then x ∈ F–left-ideal if

and only if there exists a left linear combination f of F such that x =
∑

f.

(62) Let L be an add-associative left zeroed right zeroed add-cancelable asso-

ciative distributive well unital non empty double loop structure, F be a non

empty subset of the carrier of L, and x be a set. Then x ∈ F–right-ideal

if and only if there exists a right linear combination f of F such that

x =
∑

f.

(63) Let R be an add-associative left zeroed right zeroed add-cancelable well

unital associative commutative distributive non empty double loop struc-

ture and F be a non empty subset of the carrier of R. Then F–ideal =

F–left-ideal and F–ideal = F–right-ideal.

(64) Let R be an add-associative left zeroed right zeroed add-cancelable well

unital associative commutative distributive non empty double loop struc-

ture and a be an element of R. Then {a}–ideal = {a · r : r ranges over

elements of R}.
(65) Let R be an Abelian left zeroed right zeroed add-cancelable well unital

add-associative associative commutative distributive non empty double

loop structure and a, b be elements of R. Then {a, b}–ideal = {a·r+b·s : r
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ranges over elements of R, s ranges over elements of R}.
(66) For every non empty double loop structure R and for every element a of

R holds a ∈ {a}–ideal.
(67) Let R be an Abelian left zeroed right zeroed right complementable add-

associative associative commutative distributive well unital non empty

double loop structure, A be a non empty subset of R, and a be an element

of R. If a ∈ A–ideal, then {a}–ideal ⊆ A–ideal.

(68) For every non empty double loop structure R and for all elements a, b

of R holds a ∈ {a, b}–ideal and b ∈ {a, b}–ideal.
(69) For every non empty double loop structure R and for all elements a, b

of R holds {a}–ideal ⊆ {a, b}–ideal and {b}–ideal ⊆ {a, b}–ideal.

5. Some Operations on Ideals

Let R be a non empty groupoid, let I be a subset of R, and let a be an

element of R. The functor a · I yielding a subset of R is defined by:
(Def. 19) a · I = {a · i; i ranges over elements of R: i ∈ I}.

Let R be a non empty multiplicative loop structure, let I be a non empty

subset of R, and let a be an element of R. Observe that a · I is non empty.
Let R be a distributive non empty double loop structure, let I be an add

closed subset of R, and let a be an element of R. Observe that a ·I is add closed.
Let R be an associative non empty double loop structure, let I be a right

ideal subset of R, and let a be an element of R. One can check that a · I is right
ideal.

One can prove the following propositions:

(70) Let R be a right zeroed add-left-cancelable left distributive non empty

double loop structure and I be a non empty subset of R. Then 0R · I =

{0R}.
(71) For every left unital non empty double loop structure R and for every

subset I of R holds 1R · I = I.

Let R be a non empty loop structure and let I, J be subsets of R. The

functor I + J yielding a subset of R is defined by:

(Def. 20) I +J = {a+ b; a ranges over elements of R, b ranges over elements of R:

a ∈ I ∧ b ∈ J}.
Let R be a non empty loop structure and let I, J be non empty subsets of

R. One can check that I + J is non empty.

Let R be an Abelian non empty loop structure and let I, J be subsets of R.

Let us observe that the functor I + J is commutative.
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Let R be an Abelian add-associative non empty loop structure and let I, J

be add closed subsets of R. Note that I + J is add closed.

Let R be a left distributive non empty double loop structure and let I, J be

right ideal subsets of R. Observe that I + J is right ideal.

Let R be a right distributive non empty double loop structure and let I, J

be left ideal subsets of R. One can check that I + J is left ideal.

One can prove the following propositions:

(72) For every add-associative non empty loop structure R and for all subsets

I, J , K of R holds I + (J + K) = (I + J) + K.

(73) Let R be a left zeroed right zeroed add-right-cancelable right distributive

non empty double loop structure and I, J be right ideal non empty subsets

of R. Then I ⊆ I + J.

(74) Let R be a left zeroed add-right-cancelable right distributive non empty

double loop structure and I, J be right ideal non empty subsets of R.

Then J ⊆ I + J.

(75) Let R be a non empty loop structure, I, J be subsets of R, and K be

an add closed subset of R. If I ⊆ K and J ⊆ K, then I + J ⊆ K.

(76) Let R be an Abelian left zeroed right zeroed add-cancelable well unital

add-associative associative commutative distributive non empty double

loop structure and a, b be elements of R. Then {a, b}–ideal = {a}–ideal+
{b}–ideal.
Let R be a non empty 1-sorted structure and let I, J be subsets of R. The

functor I ∩ J yielding a subset of R is defined as follows:

(Def. 21) I ∩ J = {x;x ranges over elements of R: x ∈ I ∧ x ∈ J}.
Let R be a right zeroed add-left-cancelable left distributive non empty double

loop structure and let I, J be left ideal non empty subsets of R. Note that I ∩J

is non empty.

Let R be a non empty loop structure and let I, J be add closed subsets of

R. Note that I ∩ J is add closed.

Let R be a non empty multiplicative loop structure and let I, J be left ideal

subsets of R. Observe that I ∩ J is left ideal.

Let R be a non empty multiplicative loop structure and let I, J be right

ideal subsets of R. Note that I ∩ J is right ideal.

One can prove the following four propositions:

(77) For every non empty 1-sorted structure R and for all subsets I, J of R

holds I ∩ J ⊆ I and I ∩ J ⊆ J.

(78) For every non empty 1-sorted structure R and for all subsets I, J , K of

R holds I ∩ (J ∩K) = (I ∩ J) ∩K.

(79) For every non empty 1-sorted structure R and for all subsets I, J , K of

R such that K ⊆ I and K ⊆ J holds K ⊆ I ∩ J.
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(80) Let R be an Abelian left zeroed right zeroed right complementable left

unital add-associative left distributive non empty double loop structure, I

be an add closed left ideal non empty subset of R, J be a subset of R, and

K be a non empty subset of R. If J ⊆ I, then I ∩ (J + K) = J + I ∩K.

Let R be a non empty double loop structure and let I, J be subsets of R.

The functor I ∗ J yields a subset of R and is defined by the condition (Def. 22).
(Def. 22) I ∗ J = {∑ s; s ranges over finite sequences of elements of the carrier

of R:
∧

i :natural number
(1 ¬ i ∧ i ¬ len s ⇒ ∨

a,b : element of R (s(i) =

a · b ∧ a ∈ I ∧ b ∈ J))}.
Let R be a non empty double loop structure and let I, J be subsets of R.

Note that I ∗ J is non empty.

Let R be a commutative non empty double loop structure and let I, J be

subsets of R. Let us observe that the functor I ∗ J is commutative.

Let R be a right zeroed add-associative non empty double loop structure

and let I, J be subsets of R. Note that I ∗ J is add closed.

Let R be a right zeroed add-left-cancelable associative left distributive non

empty double loop structure and let I, J be right ideal subsets of R. One can

check that I ∗ J is right ideal.

Let R be a left zeroed add-right-cancelable associative right distributive non

empty double loop structure and let I, J be left ideal subsets of R. Note that

I ∗ J is left ideal.

We now state several propositions:

(81) Let R be a left zeroed right zeroed add-left-cancelable left distributive

non empty double loop structure and I be a non empty subset of R. Then

{0R} ∗ I = {0R}.
(82) Let R be a left zeroed right zeroed add-cancelable distributive non empty

double loop structure, I be an add closed right ideal non empty subset

of R, and J be an add closed left ideal non empty subset of R. Then

I ∗ J ⊆ I ∩ J.

(83) Let R be an Abelian left zeroed right zeroed add-cancelable add-

associative associative distributive non empty double loop structure and I,

J ,K be right ideal non empty subsets of R. Then I∗(J+K) = I∗J+I∗K.

(84) Let R be an Abelian left zeroed right zeroed add-cancelable add-

associative commutative associative distributive non empty double loop

structure and I, J be right ideal non empty subsets of R. Then (I + J) ∗
(I ∩ J) ⊆ I ∗ J.

(85) Let R be a right zeroed add-left-cancelable left distributive non empty

double loop structure and I, J be add closed left ideal non empty subsets

of R. Then (I + J) ∗ (I ∩ J) ⊆ I ∩ J.

Let R be a non empty loop structure and let I, J be subsets of R. We say
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that I, J are co-prime if and only if:

(Def. 23) I + J = the carrier of R.

We now state two propositions:

(86) Let R be a left zeroed left unital non empty double loop structure and

I, J be non empty subsets of R. If I, J are co-prime, then I ∩ J ⊆
(I + J) ∗ (I ∩ J).

(87) Let R be an Abelian left zeroed right zeroed add-cancelable add-

associative left unital commutative associative distributive non empty do-

uble loop structure, I be an add closed left ideal right ideal non empty

subset of R, and J be an add closed left ideal non empty subset of R. If

I, J are co-prime, then I ∗ J = I ∩ J.

Let R be a non empty groupoid and let I, J be subsets of R. The functor

I % J yields a subset of R and is defined by:

(Def. 24) I % J = {a; a ranges over elements of R: a · J ⊆ I}.
Let R be a right zeroed add-left-cancelable left distributive non empty double

loop structure and let I, J be left ideal non empty subsets of R. One can check

that I % J is non empty.

Let R be a right zeroed add-left-cancelable left distributive non empty double

loop structure and let I, J be add closed left ideal non empty subsets of R. One

can check that I % J is add closed.

Let R be a right zeroed add-left-cancelable left distributive associative com-

mutative non empty double loop structure and let I, J be left ideal non empty

subsets of R. Note that I % J is left ideal and I % J is right ideal.

We now state several propositions:

(88) Let R be a non empty multiplicative loop structure, I be a right ideal

non empty subset of R, and J be a subset of R. Then I ⊆ I % J.

(89) Let R be a right zeroed add-left-cancelable left distributive non empty

double loop structure, I be an add closed left ideal non empty subset of

R, and J be a subset of R. Then (I % J) ∗ J ⊆ I.

(90) Let R be a left zeroed add-right-cancelable right distributive non empty

double loop structure, I be an add closed right ideal non empty subset of

R, and J be a subset of R. Then (I % J) ∗ J ⊆ I.

(91) Let R be a left zeroed add-right-cancelable right distributive commu-

tative associative non empty double loop structure, I be an add closed

right ideal non empty subset of R, and J , K be subsets of R. Then

(I % J) % K = I % (J ∗K).

(92) For every non empty multiplicative loop structure R and for all subsets

I, J , K of R holds (J ∩K) % I = (J % I) ∩ (K % I).

(93) Let R be a left zeroed right zeroed add-right-cancelable right distributive

non empty double loop structure, I be an add closed subset of R, and J ,K
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be right ideal non empty subsets of R. Then I%(J+K) = (I%J)∩(I%K).

Let R be a unital non empty double loop structure and let I be a subset of

R. The functor
√

I yielding a subset of R is defined as follows:

(Def. 25)
√

I = {a; a ranges over elements of R:
∨

n :natural number
an ∈ I}.

Let R be a unital non empty double loop structure and let I be a non empty

subset of R. One can verify that
√

I is non empty.

Let R be an Abelian add-associative left zeroed right zeroed commutative

associative add-cancelable distributive unital non empty double loop structure

and let I be an add closed right ideal non empty subset of R. Observe that
√

I

is add closed.

Let R be a unital commutative associative non empty double loop structure

and let I be a left ideal non empty subset of R. Observe that
√

I is left ideal

and
√

I is right ideal.

One can prove the following propositions:

(94) Let R be a unital associative non empty double loop structure, I be a

non empty subset of R, and a be an element of R. Then a ∈
√

I if and

only if there exists a natural number n such that an ∈
√

I.

(95) Let R be a left zeroed right zeroed add-cancelable distributive unital

associative non empty double loop structure, I be an add closed right

ideal non empty subset of R, and J be an add closed left ideal non empty

subset of R. Then
√

I ∗ J =
√

I ∩ J.

6. Noetherian Rings and PIDs

Let L be a non empty double loop structure and let I be an ideal of L. We

say that I is finitely generated if and only if:

(Def. 26) There exists a non empty finite subset F of the carrier of L such that

I = F–ideal.

Let L be a non empty double loop structure. Observe that there exists an

ideal of L which is finitely generated.

Let L be a non empty double loop structure and let F be a non empty finite

subset of L. Note that F–ideal is finitely generated.

Let L be a non empty double loop structure. We say that L is Noetherian if

and only if:

(Def. 27) Every ideal of L is finitely generated.

Let us observe that there exists a non empty double loop structure which

is Euclidian, Abelian, add-associative, right zeroed, right complementable, well

unital, distributive, commutative, associative, and non degenerated.
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Let L be a non empty double loop structure and let I be an ideal of L. We

say that I is principal if and only if:

(Def. 28) There exists an element e of the carrier of L such that I = {e}–ideal.
Let L be a non empty double loop structure. We say that L is PID if and

only if:

(Def. 29) Every ideal of L is principal.

One can prove the following three propositions:

(96) Let L be a non empty double loop structure and F be a non empty subset

of the carrier of L. Suppose F 6= {0L}. Then there exists an element x of

the carrier of L such that x 6= 0L and x ∈ F.

(97) Every add-associative left zeroed right zeroed right complementable di-

stributive left unital Euclidian non empty double loop structure is PID.

(98) For every non empty double loop structure L such that L is PID holds

L is Noetherian.

Let us note that INT.Ring is Noetherian.

Let us observe that there exists a non empty double loop structure which is

Noetherian, Abelian, add-associative, right zeroed, right complementable, well

unital, distributive, commutative, associative, and non degenerated.

Next we state two propositions:

(99) Let R be a Noetherian add-associative left zeroed right zeroed add-

cancelable associative distributive well unital non empty double loop struc-

ture and B be a non empty subset of the carrier of R. Then there exists

a non empty finite subset C of the carrier of R such that C ⊆ B and

C–ideal = B–ideal.

(100) Let R be a non empty double loop structure. Suppose that for every

non empty subset B of the carrier of R there exists a non empty finite

subset C of the carrier of R such that C ⊆ B and C–ideal = B–ideal. Let

a be a sequence of R. Then there exists a natural number m such that

a(m + 1) ∈ (rng(a↾Zm+1))–ideal.

Let X, Y be non empty sets, let f be a function from X into Y , and let A

be a non empty subset of X. One can check that f↾A is non empty.

The following two propositions are true:

(101) Let R be a non empty double loop structure. Suppose that for every

sequence a of R there exists a natural number m such that a(m + 1) ∈
(rng(a↾Zm+1))–ideal. Then there does not exist a function F from N into

2the carrier of R such that

(i) for every natural number i holds F (i) is an ideal of R, and

(ii) for all natural numbers j, k such that j < k holds F (j) ⊆ F (k) and

F (j) 6= F (k).



ring ideals 581

(102) Let R be a non empty double loop structure. Suppose that it is not true

that there exists a function F from N into 2the carrier of R such that for

every natural number i holds F (i) is an ideal of R and for all natural

numbers j, k such that j < k holds F (j) ⊆ F (k) and F (j) 6= F (k). Then

R is Noetherian.
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