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The articles [23], [29], [11], [28], [14], [2], [27], [12], [30], [8], [5], [3], [20], [9],

[6], [22], [7], [10], [1], [4], [15], [17], [18], [24], [25], [19], [16], [21], [13], and [26]

provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

(1) For every integer i holds i is even iff i− 1 is odd.

(2) For every integer i holds i is odd iff i− 1 is even.

(3) Let X be a trivial set and x be a set. Suppose x ∈ X. Let f be a function

from X into X. Then x is a fixpoint of f .

Let A, B, C be sets. Note that every function from A into CB is function

yielding.

One can prove the following three propositions:

(4) For every function yielding function f holds Subf rng f = rng f.

(5) For all sets A, B, x and for every function f such that x ∈ A and f ∈ BA

holds f(x) ∈ B.

(6) For all sets A, B, C such that if C = ∅, then B = ∅ or A = ∅ and for

every function f from A into CB holds domκ f(κ) = A 7−→ B.

Let us note that ∅ is function yielding.

In the sequel n is a natural number and p, q, r are elements of HP-WFF.

Next we state the proposition

(7) For every set x holds ∅(x) = ∅.

441
c© 2001 University of Białystok

ISSN 1426–2630



442 andrzej trybulec

Let A be a set and let B be a functional set. One can verify that every

function from A into B is function yielding.

One can prove the following propositions:

(8) For every set X and for every subset A of X holds [0 7−→ 1, 1 7−→

0] · χA,X = χAc,X .

(9) For every set X and for every subset A of X holds [0 7−→ 1, 1 7−→

0] · χAc,X = χA,X .

(10) For all sets a, b, x, y, x′, y′ such that a 6= b and [a 7−→ x, b 7−→ y] =

[a 7−→ x′, b 7−→ y′] holds x = x′ and y = y′.

(11) For all sets a, b, x, y, X, Y such that a 6= b and x ∈ X and y ∈ Y holds

[a 7−→ x, b 7−→ y] ∈
∏

[a 7−→ X, b 7−→ Y ].

(12) For every non empty set D and for every function f from 2 into D there

exist elements d1, d2 of D such that f = [0 7−→ d1, 1 7−→ d2].

(13) For all sets a, b, c, d such that a 6= b holds [a 7−→ c, b 7−→ d] · [a 7−→

b, b 7−→ a] = [a 7−→ d, b 7−→ c].

(14) For all sets a, b, c, d and for every function f such that a 6= b and c ∈

dom f and d ∈ dom f holds f · [a 7−→ c, b 7−→ d] = [a 7−→ f(c), b 7−→ f(d)].

2. The Cartesian Product of Functions and the Frege Function

Let f , g be one-to-one functions. Note that [: f, g :] is one-to-one.

We now state a number of propositions:

(15) Let A, B be non empty sets, C, D be sets, f be a function from C into A,

and g be a function fromD into B. Then π1(A×B)·[: f, g :] = f ·π1(C×D).

(16) Let A, B be non empty sets, C, D be sets, f be a function from C into A,

and g be a function from D into B. Then π2(A×B)·[: f, g :] = g ·π2(C×D).

(17) For every function g holds ∅" g = ∅.

(18) For every function yielding function f and for all functions g, h holds

f " g · h = (f · h) " (g · h).

(19) Let C be a set, A be a non empty set, f be a function from A into

C(∅ qua set), and g be a function from A into ∅. Then rng(f " g) = {∅}.

(20) Let A, B, C be sets such that if B = ∅, then A = ∅. Let f be a function

from A into CB and g be a function from A into B. Then rng(f " g) ⊆ C.

(21) For all sets A, B, C such that if C = ∅, then B = ∅ or A = ∅ and for

every function f from A into CB holds domFrege(f) = BA.

(22) Frege(∅) = {∅} 7−→ ∅.

(23) For all sets A, B, C such that if C = ∅, then B = ∅ or A = ∅ and for

every function f from A into CB holds rng Frege(f) ⊆ CA.
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(24) Let A, B, C be sets such that if C = ∅, then B = ∅ or A = ∅. Let f be a

function from A into CB. Then Frege(f) is a function from BA into CA.

3. About Permutations

Let A be a set. Observe that every permutation of A is one-to-one.

The following proposition is true

(25) For all sets A, B and for every permutation P of A and for every per-

mutation Q of B holds [:P, Q :] is permutation-like.

Let A, B be non empty sets, let P be a permutation of A, and let Q be a

function from B into B. The functor P ⇒ Q yielding a function from BA into

BA is defined as follows:

(Def. 1) For every function f from A into B holds (P ⇒ Q)(f) = Q · f · P−1.

Let A, B be non empty sets, let P be a permutation of A, and let Q be a

permutation of B. Observe that P ⇒ Q is permutation-like.

Next we state three propositions:

(26) Let A, B be non empty sets, P be a permutation of A, Q be a permu-

tation of B, and f be a function from A into B. Then (P ⇒ Q)−1(f) =

Q−1 · f · P.

(27) For all non empty sets A, B and for every permutation P of A and for

every permutation Q of B holds (P ⇒ Q)−1 = P−1 ⇒ Q−1.

(28) Let A, B, C be non empty sets, f be a function from A into CB, g be a

function from A into B, P be a permutation of B, and Q be a permutation

of C. Then ((P ⇒ Q) · f) " (P · g) = Q · f " g.

4. Set Valuations

A SetValuation is a non-empty many sorted set indexed by N.

In the sequel V denotes a SetValuation.

Let us consider V . The functor SetValV yielding a many sorted set indexed

by HP-WFF is defined by the conditions (Def. 2).

(Def. 2)(i) (SetValV )(VERUM) = 1,

(ii) for every n holds (SetValV )(propn) = V (n), and

(iii) for all p, q holds (SetValV )(p ∧ q) = [: (SetValV )(p), (SetValV )(q) :]

and (SetValV )(p⇒ q) = (SetValV )(q)(SetValV )(p).

Let us consider V , p. The functor SetVal(V, p) is defined as follows:

(Def. 3) SetVal(V, p) = (SetValV )(p).
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Let us consider V , p. One can check that SetVal(V, p) is non empty.

Next we state four propositions:

(29) SetVal(V,VERUM) = 1.

(30) SetVal(V,propn) = V (n).

(31) SetVal(V, p ∧ q) = [:SetVal(V, p), SetVal(V, q) :].

(32) SetVal(V, p⇒ q) = (SetVal(V, q))SetVal(V,p).

Let us consider V , p, q. Observe that SetVal(V, p⇒ q) is functional.

Let us consider V , p, q, r. Note that every element of SetVal(V, p⇒ (q ⇒ r))

is function yielding.

Let us consider V , p, q, r. One can check that there exists a function from

SetVal(V, p ⇒ q) into SetVal(V, p ⇒ r) which is function yielding and there

exists an element of SetVal(V, p⇒ (q ⇒ r)) which is function yielding.

5. Permuting Set Valuations

Let us consider V . A function is called a permutation of V if:

(Def. 4) dom it = N and for every n holds it(n) is a permutation of V (n).

In the sequel P is a permutation of V .

Let us consider V , P . The functor PermP yielding a many sorted function

from SetValV into SetValV is defined by the conditions (Def. 5).

(Def. 5)(i) (PermP )(VERUM) = id1,

(ii) for every n holds (PermP )(propn) = P (n), and

(iii) for all p, q there exists a permutation p′ of SetVal(V, p) and there

exists a permutation q′ of SetVal(V, q) such that p′ = (PermP )(p) and

q′ = (PermP )(q) and (PermP )(p ∧ q) = [: p′, q′ :] and (PermP )(p⇒ q) =

p′ ⇒ q′.

Let us consider V , P , p. The functor Perm(P, p) yields a function from

SetVal(V, p) into SetVal(V, p) and is defined by:

(Def. 6) Perm(P, p) = (PermP )(p).

Next we state four propositions:

(33) Perm(P,VERUM) = idSetVal(V,VERUM).

(34) Perm(P,propn) = P (n).

(35) Perm(P, p ∧ q) = [:Perm(P, p), Perm(P, q) :].

(36) For every permutation p′ of SetVal(V, p) and for every permutation q′

of SetVal(V, q) such that p′ = Perm(P, p) and q′ = Perm(P, q) holds

Perm(P, p⇒ q) = p′ ⇒ q′.

Let us consider V , P , p. One can check that Perm(P, p) is permutation-like.

We now state four propositions:
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(37) For every function g from SetVal(V, p) into SetVal(V, q) holds

(Perm(P, p⇒ q))(g) = Perm(P, q) · g · (Perm(P, p))−1.

(38) For every function g from SetVal(V, p) into SetVal(V, q) holds

(Perm(P, p⇒ q))−1(g) = (Perm(P, q))−1 · g · Perm(P, p).

(39) For all functions f , g from SetVal(V, p) into SetVal(V, q) such that f =

(Perm(P, p⇒ q))(g) holds Perm(P, q) · g = f · Perm(P, p).

(40) Let given V , P be a permutation of V , and x be a set. Suppose x is a

fixpoint of Perm(P, p). Let f be a function. If f is a fixpoint of Perm(P, p⇒

q), then f(x) is a fixpoint of Perm(P, q).

6. Canonical Formulae

Let us consider p. We say that p is canonical if and only if:

(Def. 7) For every V there exists a set x such that for every permutation P of V

holds x is a fixpoint of Perm(P, p).

Let us observe that VERUM is canonical.

Next we state several propositions:

(41) p⇒ (q ⇒ p) is canonical.

(42) (p⇒ (q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)) is canonical.

(43) p ∧ q ⇒ p is canonical.

(44) p ∧ q ⇒ q is canonical.

(45) p⇒ (q ⇒ p ∧ q) is canonical.

(46) If p is canonical and p⇒ q is canonical, then q is canonical.

(47) If p ∈ HP TAUT, then p is canonical.

Let us observe that there exists an element of HP-WFF which is canonical.

7. Pseudo-Canonical Formulae

Let us consider p. We say that p is pseudo-canonical if and only if:

(Def. 8) For every V and for every permutation P of V holds there exists a set

which is a fixpoint of Perm(P, p).

Let us observe that every element of HP-WFF which is canonical is also

pseudo-canonical.

One can prove the following propositions:

(48) p⇒ (q ⇒ p) is pseudo-canonical.

(49) (p⇒ (q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)) is pseudo-canonical.
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(50) p ∧ q ⇒ p is pseudo-canonical.

(51) p ∧ q ⇒ q is pseudo-canonical.

(52) p⇒ (q ⇒ p ∧ q) is pseudo-canonical.

(53) If p is pseudo-canonical and p⇒ q is pseudo-canonical, then q is pseudo-

canonical.

(54) Let given p, q, given V , and P be a permutation of V . Suppose there

exists a set which is a fixpoint of Perm(P, p) and there exists no set which

is a fixpoint of Perm(P, q). Then p⇒ q is not pseudo-canonical.

(55) ((prop 0⇒ prop 1)⇒ prop 0)⇒ prop 0 is not pseudo-canonical.
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