The Canonical Formulae

Andrzej Trybulec
University of Białystok

MML Identifier: HILBERT3.

The articles [23], [29], [11], [28], [14], [2], [27], [12], [30], [8], [5], [3], [20], [9], [6], [22], [7], [10], [1], [4], [15], [17], [18], [24], [25], [19], [16], [21], [13], and [26] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:
(1) For every integer i holds i is even iff $i-1$ is odd.
(2) For every integer i holds i is odd iff $i-1$ is even.
(3) Let X be a trivial set and x be a set. Suppose $x \in X$. Let f be a function from X into X. Then x is a fixpoint of f.
Let A, B, C be sets. Note that every function from A into C^{B} is function yielding.

One can prove the following three propositions:
(4) For every function yielding function f holds $\operatorname{Sub}_{\mathrm{f}} \operatorname{rng} f=\operatorname{rng} f$.
(5) For all sets A, B, x and for every function f such that $x \in A$ and $f \in B^{A}$ holds $f(x) \in B$.
(6) For all sets A, B, C such that if $C=\emptyset$, then $B=\emptyset$ or $A=\emptyset$ and for every function f from A into C^{B} holds $\operatorname{dom}_{\kappa} f(\kappa)=A \longmapsto B$.
Let us note that \emptyset is function yielding.
In the sequel n is a natural number and p, q, r are elements of HP-WFF.
Next we state the proposition
(7) For every set x holds $\emptyset(x)=\emptyset$.

Let A be a set and let B be a functional set. One can verify that every function from A into B is function yielding.

One can prove the following propositions:
(8) For every set X and for every subset A of X holds $[0 \longmapsto 1,1 \longmapsto$ $0] \cdot \chi_{A, X}=\chi_{A^{\mathrm{c}}, X}$.
(9) For every set X and for every subset A of X holds $[0 \longmapsto 1,1 \longmapsto$ $0] \cdot \chi_{A^{c}, X}=\chi_{A, X}$.
(10) For all sets $a, b, x, y, x^{\prime}, y^{\prime}$ such that $a \neq b$ and $[a \longmapsto x, b \longmapsto y]=$ $\left[a \longmapsto x^{\prime}, b \longmapsto y^{\prime}\right]$ holds $x=x^{\prime}$ and $y=y^{\prime}$.
(11) For all sets a, b, x, y, X, Y such that $a \neq b$ and $x \in X$ and $y \in Y$ holds $[a \longmapsto x, b \longmapsto y] \in \prod[a \longmapsto X, b \longmapsto Y]$.
(12) For every non empty set D and for every function f from 2 into D there exist elements d_{1}, d_{2} of D such that $f=\left[0 \longmapsto d_{1}, 1 \longmapsto d_{2}\right]$.
(13) For all sets a, b, c, d such that $a \neq b$ holds $[a \longmapsto c, b \longmapsto d] \cdot[a \longmapsto$ $b, b \longmapsto a]=[a \longmapsto d, b \longmapsto c]$.
(14) For all sets a, b, c, d and for every function f such that $a \neq b$ and $c \in$ $\operatorname{dom} f$ and $d \in \operatorname{dom} f$ holds $f \cdot[a \longmapsto c, b \longmapsto d]=[a \longmapsto f(c), b \longmapsto f(d)]$.

2. The Cartesian Product of Functions and the Frege Function

Let f, g be one-to-one functions. Note that $: f, g:]$ is one-to-one.
We now state a number of propositions:
(15) Let A, B be non empty sets, C, D be sets, f be a function from C into A, and g be a function from D into B. Then $\left.\pi_{1}(A \times B) \cdot: f, g:\right]=f \cdot \pi_{1}(C \times D)$.
(16) Let A, B be non empty sets, C, D be sets, f be a function from C into A, and g be a function from D into B. Then $\left.\pi_{2}(A \times B) \cdot: f, g:\right]=g \cdot \pi_{2}(C \times D)$.
(17) For every function g holds $\emptyset \leftrightarrow g=\emptyset$.
(18) For every function yielding function f and for all functions g, h holds $f \leftrightarrow g \cdot h=(f \cdot h) \leftrightarrow(g \cdot h)$.
(19) Let C be a set, A be a non empty set, f be a function from A into $C^{(\emptyset}$ qua set) , and g be a function from A into \emptyset. Then $\operatorname{rng}(f \leftrightarrow g)=\{\emptyset\}$.
(20) Let A, B, C be sets such that if $B=\emptyset$, then $A=\emptyset$. Let f be a function from A into C^{B} and g be a function from A into B. Then $\operatorname{rng}(f \leftrightarrow g) \subseteq C$.
(21) For all sets A, B, C such that if $C=\emptyset$, then $B=\emptyset$ or $A=\emptyset$ and for every function f from A into C^{B} holds dom Frege $(f)=B^{A}$.
(22) Frege $(\emptyset)=\{\emptyset\} \longmapsto \emptyset$.
(23) For all sets A, B, C such that if $C=\emptyset$, then $B=\emptyset$ or $A=\emptyset$ and for every function f from A into C^{B} holds rng Frege $(f) \subseteq C^{A}$.
(24) Let A, B, C be sets such that if $C=\emptyset$, then $B=\emptyset$ or $A=\emptyset$. Let f be a function from A into C^{B}. Then Frege (f) is a function from B^{A} into C^{A}.

3. About Permutations

Let A be a set. Observe that every permutation of A is one-to-one.
The following proposition is true
(25) For all sets A, B and for every permutation P of A and for every permutation Q of B holds : $P, Q:$ is permutation-like.
Let A, B be non empty sets, let P be a permutation of A, and let Q be a function from B into B. The functor $P \Rightarrow Q$ yielding a function from B^{A} into B^{A} is defined as follows:
(Def. 1) For every function f from A into B holds $(P \Rightarrow Q)(f)=Q \cdot f \cdot P^{-1}$.
Let A, B be non empty sets, let P be a permutation of A, and let Q be a permutation of B. Observe that $P \Rightarrow Q$ is permutation-like.

Next we state three propositions:
(26) Let A, B be non empty sets, P be a permutation of A, Q be a permutation of B, and f be a function from A into B. Then $(P \Rightarrow Q)^{-1}(f)=$ $Q^{-1} \cdot f \cdot P$
(27) For all non empty sets A, B and for every permutation P of A and for every permutation Q of B holds $(P \Rightarrow Q)^{-1}=P^{-1} \Rightarrow Q^{-1}$.
(28) Let A, B, C be non empty sets, f be a function from A into C^{B}, g be a function from A into B, P be a permutation of B, and Q be a permutation of C. Then $((P \Rightarrow Q) \cdot f) \leftarrow(P \cdot g)=Q \cdot f \leftrightarrow g$.

4. Set Valuations

A SetValuation is a non-empty many sorted set indexed by \mathbb{N}.
In the sequel V denotes a SetValuation.
Let us consider V. The functor SetVal V yielding a many sorted set indexed by HP-WFF is defined by the conditions (Def. 2).
$($ Def. 2)(i) $\quad(\operatorname{SetVal} V)($ VERUM $)=1$,
(ii) for every n holds $(\operatorname{SetVal} V)(\operatorname{prop} n)=V(n)$, and
(iii) for all p, q holds $(\operatorname{SetVal} V)(p \wedge q)=:(\operatorname{SetVal} V)(p),(\operatorname{SetVal} V)(q):$ and $(\operatorname{SetVal} V)(p \Rightarrow q)=(\operatorname{SetVal} V)(q)^{(\operatorname{SetVal} V)(p)}$.
Let us consider V, p. The functor $\operatorname{Set} \operatorname{Val}(V, p)$ is defined as follows:
$($ Def. 3) $\quad \operatorname{Set} \operatorname{Val}(V, p)=(\operatorname{Set} \operatorname{Val} V)(p)$.

Let us consider V, p. One can check that $\operatorname{Set} \operatorname{Val}(V, p)$ is non empty.
Next we state four propositions:
(29) $\operatorname{SetVal}(V$, VERUM $)=1$.
(30) $\operatorname{Set} \operatorname{Val}(V, \operatorname{prop} n)=V(n)$.
(31) $\operatorname{Set} \operatorname{Val}(V, p \wedge q)=\{\operatorname{Set} \operatorname{Val}(V, p), \operatorname{Set} \operatorname{Val}(V, q):]$.
(32) $\operatorname{SetVal}(V, p \Rightarrow q)=(\operatorname{SetVal}(V, q))^{\operatorname{SetVal}(V, p)}$.

Let us consider V, p, q. Observe that $\operatorname{Set} \operatorname{Val}(V, p \Rightarrow q)$ is functional.
Let us consider V, p, q, r. Note that every element of $\operatorname{SetVal}(V, p \Rightarrow(q \Rightarrow r))$ is function yielding.

Let us consider V, p, q, r. One can check that there exists a function from $\operatorname{SetVal}(V, p \Rightarrow q)$ into $\operatorname{SetVal}(V, p \Rightarrow r)$ which is function yielding and there exists an element of $\operatorname{SetVal}(V, p \Rightarrow(q \Rightarrow r))$ which is function yielding.

5. Permuting Set Valuations

Let us consider V. A function is called a permutation of V if:
(Def. 4) dom it $=\mathbb{N}$ and for every n holds it (n) is a permutation of $V(n)$.
In the sequel P is a permutation of V.
Let us consider V, P. The functor Perm P yielding a many sorted function from SetVal V into SetVal V is defined by the conditions (Def. 5).
(Def. 5)(i) $\quad(\operatorname{Perm} P)($ VERUM $)=\mathrm{id}_{1}$,
(ii) for every n holds $(\operatorname{Perm} P)(\operatorname{prop} n)=P(n)$, and
(iii) for all p, q there exists a permutation p^{\prime} of $\operatorname{Set} \operatorname{Val}(V, p)$ and there exists a permutation q^{\prime} of $\operatorname{SetVal}(V, q)$ such that $p^{\prime}=(\operatorname{Perm} P)(p)$ and $q^{\prime}=(\operatorname{Perm} P)(q)$ and $(\operatorname{Perm} P)(p \wedge q)=\left\{p^{\prime}, q^{\prime}\right.$: and $(\operatorname{Perm} P)(p \Rightarrow q)=$ $p^{\prime} \Rightarrow q^{\prime}$.
Let us consider V, P, p. The functor $\operatorname{Perm}(P, p)$ yields a function from $\operatorname{Set} \operatorname{Val}(V, p)$ into $\operatorname{Set} \operatorname{Val}(V, p)$ and is defined by:
$($ Def. 6) $\operatorname{Perm}(P, p)=(\operatorname{Perm} P)(p)$.
Next we state four propositions:
(33) $\operatorname{Perm}(P$, VERUM $)=\operatorname{id}_{\text {SetVal }(V, \text { VERUM })}$.
(34) $\operatorname{Perm}(P, \operatorname{prop} n)=P(n)$.
(35) $\operatorname{Perm}(P, p \wedge q)=\{\operatorname{Perm}(P, p), \operatorname{Perm}(P, q) \ddagger$.
(36) For every permutation p^{\prime} of $\operatorname{Set} \operatorname{Val}(V, p)$ and for every permutation q^{\prime} of $\operatorname{SetVal}(V, q)$ such that $p^{\prime}=\operatorname{Perm}(P, p)$ and $q^{\prime}=\operatorname{Perm}(P, q)$ holds $\operatorname{Perm}(P, p \Rightarrow q)=p^{\prime} \Rightarrow q^{\prime}$.
Let us consider V, P, p. One can check that $\operatorname{Perm}(P, p)$ is permutation-like. We now state four propositions:
(37) For every function g from $\operatorname{Set} \operatorname{Val}(V, p)$ into $\operatorname{SetVal}(V, q)$ holds $(\operatorname{Perm}(P, p \Rightarrow q))(g)=\operatorname{Perm}(P, q) \cdot g \cdot(\operatorname{Perm}(P, p))^{-1}$.
(38) For every function g from $\operatorname{SetVal}(V, p)$ into $\operatorname{SetVal}(V, q)$ holds $(\operatorname{Perm}(P, p \Rightarrow q))^{-1}(g)=(\operatorname{Perm}(P, q))^{-1} \cdot g \cdot \operatorname{Perm}(P, p)$.
(39) For all functions f, g from $\operatorname{Set} \operatorname{Val}(V, p)$ into $\operatorname{Set} \operatorname{Val}(V, q)$ such that $f=$ $(\operatorname{Perm}(P, p \Rightarrow q))(g)$ holds $\operatorname{Perm}(P, q) \cdot g=f \cdot \operatorname{Perm}(P, p)$.
(40) Let given V, P be a permutation of V, and x be a set. Suppose x is a fixpoint of $\operatorname{Perm}(P, p)$. Let f be a function. If f is a fixpoint of $\operatorname{Perm}(P, p \Rightarrow$ $q)$, then $f(x)$ is a fixpoint of $\operatorname{Perm}(P, q)$.

6. Canonical Formulae

Let us consider p. We say that p is canonical if and only if:
(Def. 7) For every V there exists a set x such that for every permutation P of V holds x is a fixpoint of $\operatorname{Perm}(P, p)$.
Let us observe that VERUM is canonical.
Next we state several propositions:
(41) $p \Rightarrow(q \Rightarrow p)$ is canonical.
(42) $\quad(p \Rightarrow(q \Rightarrow r)) \Rightarrow((p \Rightarrow q) \Rightarrow(p \Rightarrow r))$ is canonical.
(43) $p \wedge q \Rightarrow p$ is canonical.
(44) $p \wedge q \Rightarrow q$ is canonical.
(45) $p \Rightarrow(q \Rightarrow p \wedge q)$ is canonical.
(46) If p is canonical and $p \Rightarrow q$ is canonical, then q is canonical.
(47) If $p \in$ HP_TAUT, then p is canonical.

Let us observe that there exists an element of HP-WFF which is canonical.

7. Pseudo-Canonical Formulae

Let us consider p. We say that p is pseudo-canonical if and only if:
(Def. 8) For every V and for every permutation P of V holds there exists a set which is a fixpoint of $\operatorname{Perm}(P, p)$.
Let us observe that every element of HP-WFF which is canonical is also pseudo-canonical.

One can prove the following propositions:
(48) $p \Rightarrow(q \Rightarrow p)$ is pseudo-canonical.
(49) $\quad(p \Rightarrow(q \Rightarrow r)) \Rightarrow((p \Rightarrow q) \Rightarrow(p \Rightarrow r))$ is pseudo-canonical.
(50) $p \wedge q \Rightarrow p$ is pseudo-canonical.
(51) $p \wedge q \Rightarrow q$ is pseudo-canonical.
(52) $\quad p \Rightarrow(q \Rightarrow p \wedge q)$ is pseudo-canonical.
(53) If p is pseudo-canonical and $p \Rightarrow q$ is pseudo-canonical, then q is pseudocanonical.
(54) Let given p, q, given V, and P be a permutation of V. Suppose there exists a set which is a fixpoint of $\operatorname{Perm}(P, p)$ and there exists no set which is a fixpoint of $\operatorname{Perm}(P, q)$. Then $p \Rightarrow q$ is not pseudo-canonical.
(55) $\quad((\operatorname{prop} 0 \Rightarrow \operatorname{prop} 1) \Rightarrow \operatorname{prop} 0) \Rightarrow \operatorname{prop} 0$ is not pseudo-canonical.

References

[1] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537541, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547552, 1991.
[5] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[6] Czesław Bylinski. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[7] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[12] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[13] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics, 8(1):69-72, 1999.
[14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[15] Artur Korniłowicz. Extensions of mappings on generator set. Formalized Mathematics, 5(2):269-272, 1996.
[16] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61-65, 1996.
[17] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103108, 1993.
[18] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55-60, 1996.
[19] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167-172, 1996.
[20] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[21] Piotr Rudnicki and Andrzej Trybulec. Fixpoints in complete lattices. Formalized Mathematics, 6(1):109-115, 1997.
[22] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, $1(3): 495-500,1990$.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[24] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[25] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
[26] Andrzej Trybulec. Defining by structural induction in the positive propositional language. Formalized Mathematics, 8(1):133-137, 1999.
[27] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[29] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received July 4, 2000

