The Canonical Formulae

Andrzej Trybulec University of Białystok

MML Identifier: HILBERT3.

The articles [23], [29], [11], [28], [14], [2], [27], [12], [30], [8], [5], [3], [20], [9], [6], [22], [7], [10], [1], [4], [15], [17], [18], [24], [25], [19], [16], [21], [13], and [26] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

- (1) For every integer i holds i is even iff i 1 is odd.
- (2) For every integer *i* holds *i* is odd iff i 1 is even.
- (3) Let X be a trivial set and x be a set. Suppose $x \in X$. Let f be a function from X into X. Then x is a fixpoint of f.

Let A, B, C be sets. Note that every function from A into C^B is function yielding.

One can prove the following three propositions:

- (4) For every function yielding function f holds $\operatorname{Sub}_{f} \operatorname{rng} f = \operatorname{rng} f$.
- (5) For all sets A, B, x and for every function f such that $x \in A$ and $f \in B^A$ holds $f(x) \in B$.
- (6) For all sets A, B, C such that if $C = \emptyset$, then $B = \emptyset$ or $A = \emptyset$ and for every function f from A into C^B holds dom_{κ} $f(\kappa) = A \mapsto B$.

Let us note that \emptyset is function yielding.

In the sequel n is a natural number and p, q, r are elements of HP-WFF. Next we state the proposition

(7) For every set x holds $\emptyset(x) = \emptyset$.

C 2001 University of Białystok ISSN 1426-2630 Let A be a set and let B be a functional set. One can verify that every function from A into B is function yielding.

One can prove the following propositions:

- (8) For every set X and for every subset A of X holds $[0 \mapsto 1, 1 \mapsto 0] \cdot \chi_{A,X} = \chi_{A^c,X}$.
- (9) For every set X and for every subset A of X holds $[0 \mapsto 1, 1 \mapsto 0] \cdot \chi_{A^c, X} = \chi_{A, X}$.
- (10) For all sets a, b, x, y, x', y' such that $a \neq b$ and $[a \longmapsto x, b \longmapsto y] = [a \longmapsto x', b \longmapsto y']$ holds x = x' and y = y'.
- (11) For all sets a, b, x, y, X, Y such that $a \neq b$ and $x \in X$ and $y \in Y$ holds $[a \longmapsto x, b \longmapsto y] \in \prod [a \longmapsto X, b \longmapsto Y].$
- (12) For every non empty set D and for every function f from 2 into D there exist elements d_1 , d_2 of D such that $f = [0 \longmapsto d_1, 1 \longmapsto d_2]$.
- (13) For all sets a, b, c, d such that $a \neq b$ holds $[a \longmapsto c, b \longmapsto d] \cdot [a \longmapsto b, b \longmapsto a] = [a \longmapsto d, b \longmapsto c].$
- (14) For all sets a, b, c, d and for every function f such that $a \neq b$ and $c \in \text{dom } f$ and $d \in \text{dom } f$ holds $f \cdot [a \longmapsto c, b \longmapsto d] = [a \longmapsto f(c), b \longmapsto f(d)].$

2. The Cartesian Product of Functions and the Frege Function

Let f, g be one-to-one functions. Note that [f, g] is one-to-one. We now state a number of propositions:

- (15) Let A, B be non empty sets, C, D be sets, f be a function from C into A, and g be a function from D into B. Then $\pi_1(A \times B) \cdot [f, g] = f \cdot \pi_1(C \times D)$.
- (16) Let A, B be non empty sets, C, D be sets, f be a function from C into A, and g be a function from D into B. Then $\pi_2(A \times B) \cdot [f, g] = g \cdot \pi_2(C \times D)$.
- (17) For every function g holds $\emptyset \leftrightarrow g = \emptyset$.
- (18) For every function yielding function f and for all functions g, h holds $f \leftrightarrow g \cdot h = (f \cdot h) \leftrightarrow (g \cdot h)$.
- (19) Let C be a set, A be a non empty set, f be a function from A into $C^{(\emptyset \text{ qua set})}$, and g be a function from A into \emptyset . Then $\operatorname{rng}(f \leftrightarrow g) = \{\emptyset\}$.
- (20) Let A, B, C be sets such that if $B = \emptyset$, then $A = \emptyset$. Let f be a function from A into C^B and g be a function from A into B. Then $\operatorname{rng}(f \leftrightarrow g) \subseteq C$.
- (21) For all sets A, B, C such that if $C = \emptyset$, then $B = \emptyset$ or $A = \emptyset$ and for every function f from A into C^B holds dom $\operatorname{Frege}(f) = B^A$.
- (22) $\operatorname{Frege}(\emptyset) = \{\emptyset\} \longmapsto \emptyset.$
- (23) For all sets A, B, C such that if $C = \emptyset$, then $B = \emptyset$ or $A = \emptyset$ and for every function f from A into C^B holds rng $\operatorname{Frege}(f) \subseteq C^A$.

(24) Let A, B, C be sets such that if $C = \emptyset$, then $B = \emptyset$ or $A = \emptyset$. Let f be a function from A into C^B . Then Frege(f) is a function from B^A into C^A .

3. About Permutations

Let A be a set. Observe that every permutation of A is one-to-one. The following proposition is true

(25) For all sets A, B and for every permutation P of A and for every permutation Q of B holds [P, Q] is permutation-like.

Let A, B be non empty sets, let P be a permutation of A, and let Q be a function from B into B. The functor $P \Rightarrow Q$ yielding a function from B^A into B^A is defined as follows:

- (Def. 1) For every function f from A into B holds $(P \Rightarrow Q)(f) = Q \cdot f \cdot P^{-1}$.
 - Let A, B be non empty sets, let P be a permutation of A, and let Q be a permutation of B. Observe that $P \Rightarrow Q$ is permutation-like.

Next we state three propositions:

- (26) Let A, B be non empty sets, P be a permutation of A, Q be a permutation of B, and f be a function from A into B. Then $(P \Rightarrow Q)^{-1}(f) = Q^{-1} \cdot f \cdot P$.
- (27) For all non empty sets A, B and for every permutation P of A and for every permutation Q of B holds $(P \Rightarrow Q)^{-1} = P^{-1} \Rightarrow Q^{-1}$.
- (28) Let A, B, C be non empty sets, f be a function from A into C^B , g be a function from A into B, P be a permutation of B, and Q be a permutation of C. Then $((P \Rightarrow Q) \cdot f) \leftrightarrow (P \cdot g) = Q \cdot f \leftrightarrow g$.

4. Set Valuations

A SetValuation is a non-empty many sorted set indexed by \mathbb{N} .

In the sequel V denotes a SetValuation.

Let us consider V. The functor $\operatorname{SetVal} V$ yielding a many sorted set indexed by HP-WFF is defined by the conditions (Def. 2).

- (Def. 2)(i) (SetVal V)(VERUM) = 1,
 - (ii) for every *n* holds $(\operatorname{SetVal} V)(\operatorname{prop} n) = V(n)$, and
 - (iii) for all p, q holds $(\operatorname{SetVal} V)(p \wedge q) = [(\operatorname{SetVal} V)(p), (\operatorname{SetVal} V)(q)]$ and $(\operatorname{SetVal} V)(p \Rightarrow q) = (\operatorname{SetVal} V)(q)^{(\operatorname{SetVal} V)(p)}$.

Let us consider V, p. The functor SetVal(V, p) is defined as follows:

(Def. 3) SetVal(V, p) = (SetValV)(p).

Let us consider V, p. One can check that SetVal(V, p) is non empty. Next we state four propositions:

- (29) $\operatorname{SetVal}(V, \operatorname{VERUM}) = 1.$
- (30) SetVal $(V, \operatorname{prop} n) = V(n)$.
- (31) SetVal $(V, p \land q) = [$ SetVal(V, p),SetVal(V, q)].

(32) SetVal $(V, p \Rightarrow q) = ($ SetVal $(V, q))^{$ SetVal(V, p).

Let us consider V, p, q. Observe that $\text{SetVal}(V, p \Rightarrow q)$ is functional.

Let us consider V, p, q, r. Note that every element of $\text{SetVal}(V, p \Rightarrow (q \Rightarrow r))$ is function yielding.

Let us consider V, p, q, r. One can check that there exists a function from $\operatorname{SetVal}(V, p \Rightarrow q)$ into $\operatorname{SetVal}(V, p \Rightarrow r)$ which is function yielding and there exists an element of $\operatorname{SetVal}(V, p \Rightarrow (q \Rightarrow r))$ which is function yielding.

5. Permuting Set Valuations

Let us consider V. A function is called a permutation of V if:

(Def. 4) dom it = \mathbb{N} and for every *n* holds it(*n*) is a permutation of *V*(*n*).

In the sequel P is a permutation of V.

Let us consider V, P. The functor Perm P yielding a many sorted function from SetVal V into SetVal V is defined by the conditions (Def. 5).

- (Def. 5)(i) $(Perm P)(VERUM) = id_1,$
 - (ii) for every *n* holds $(\operatorname{Perm} P)(\operatorname{prop} n) = P(n)$, and
 - (iii) for all p, q there exists a permutation p' of SetVal(V, p) and there exists a permutation q' of SetVal(V, q) such that p' = (Perm P)(p) and q' = (Perm P)(q) and $(\text{Perm } P)(p \land q) = [p', q']$ and $(\text{Perm } P)(p \Rightarrow q) = p' \Rightarrow q'$.

Let us consider V, P, p. The functor Perm(P, p) yields a function from SetVal(V, p) into SetVal(V, p) and is defined by:

(Def. 6)
$$\operatorname{Perm}(P, p) = (\operatorname{Perm} P)(p).$$

Next we state four propositions:

- (33) $\operatorname{Perm}(P, \operatorname{VERUM}) = \operatorname{id}_{\operatorname{SetVal}(V, \operatorname{VERUM})}.$
- (34) $\operatorname{Perm}(P, \operatorname{prop} n) = P(n).$
- (35) $\operatorname{Perm}(P, p \land q) = [\operatorname{Perm}(P, p), \operatorname{Perm}(P, q)].$
- (36) For every permutation p' of $\operatorname{SetVal}(V, p)$ and for every permutation q' of $\operatorname{SetVal}(V, q)$ such that $p' = \operatorname{Perm}(P, p)$ and $q' = \operatorname{Perm}(P, q)$ holds $\operatorname{Perm}(P, p \Rightarrow q) = p' \Rightarrow q'$.

Let us consider V, P, p. One can check that Perm(P, p) is permutation-like. We now state four propositions:

- (37) For every function g from $\operatorname{SetVal}(V, p)$ into $\operatorname{SetVal}(V, q)$ holds $(\operatorname{Perm}(P, p \Rightarrow q))(g) = \operatorname{Perm}(P, q) \cdot g \cdot (\operatorname{Perm}(P, p))^{-1}.$
- (38) For every function g from $\operatorname{SetVal}(V, p)$ into $\operatorname{SetVal}(V, q)$ holds $(\operatorname{Perm}(P, p \Rightarrow q))^{-1}(g) = (\operatorname{Perm}(P, q))^{-1} \cdot g \cdot \operatorname{Perm}(P, p).$
- (39) For all functions f, g from SetVal(V, p) into SetVal(V, q) such that $f = (\operatorname{Perm}(P, p \Rightarrow q))(g)$ holds $\operatorname{Perm}(P, q) \cdot g = f \cdot \operatorname{Perm}(P, p)$.
- (40) Let given V, P be a permutation of V, and x be a set. Suppose x is a fixpoint of Perm(P, p). Let f be a function. If f is a fixpoint of $Perm(P, p \Rightarrow q)$, then f(x) is a fixpoint of Perm(P, q).

6. CANONICAL FORMULAE

Let us consider p. We say that p is canonical if and only if:

(Def. 7) For every V there exists a set x such that for every permutation P of V holds x is a fixpoint of Perm(P, p).

Let us observe that VERUM is canonical.

Next we state several propositions:

- (41) $p \Rightarrow (q \Rightarrow p)$ is canonical.
- (42) $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ is canonical.
- (43) $p \wedge q \Rightarrow p$ is canonical.
- (44) $p \wedge q \Rightarrow q$ is canonical.
- (45) $p \Rightarrow (q \Rightarrow p \land q)$ is canonical.
- (46) If p is canonical and $p \Rightarrow q$ is canonical, then q is canonical.
- (47) If $p \in \text{HP}_\text{TAUT}$, then p is canonical.

Let us observe that there exists an element of HP-WFF which is canonical.

7. PSEUDO-CANONICAL FORMULAE

Let us consider p. We say that p is pseudo-canonical if and only if:

(Def. 8) For every V and for every permutation P of V holds there exists a set which is a fixpoint of Perm(P, p).

Let us observe that every element of HP-WFF which is canonical is also pseudo-canonical.

One can prove the following propositions:

- (48) $p \Rightarrow (q \Rightarrow p)$ is pseudo-canonical.
- (49) $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ is pseudo-canonical.

ANDRZEJ TRYBULEC

- (50) $p \wedge q \Rightarrow p$ is pseudo-canonical.
- (51) $p \wedge q \Rightarrow q$ is pseudo-canonical.
- (52) $p \Rightarrow (q \Rightarrow p \land q)$ is pseudo-canonical.
- (53) If p is pseudo-canonical and $p \Rightarrow q$ is pseudo-canonical, then q is pseudo-canonical.
- (54) Let given p, q, given V, and P be a permutation of V. Suppose there exists a set which is a fixpoint of Perm(P, p) and there exists no set which is a fixpoint of Perm(P, q). Then $p \Rightarrow q$ is not pseudo-canonical.
- (55) $((\operatorname{prop} 0 \Rightarrow \operatorname{prop} 1) \Rightarrow \operatorname{prop} 0) \Rightarrow \operatorname{prop} 0$ is not pseudo-canonical.

References

- Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537– 541, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [4] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547– 552, 1991.
- [5] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- [6] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
- [7] Czesław Byliński. A classical first order language. *Formalized Mathematics*, 1(4):669–676, 1990.
- [8] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [10] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
 [12] Czesław Byliński. Dzedartz ord czerzelacte in extension. Formalized Mathematics.
- [12] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701–709, 1991.
- [13] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics, 8(1):69–72, 1999.
- [14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [15] Artur Korniłowicz. Extensions of mappings on generator set. Formalized Mathematics, 5(2):269-272, 1996.
- [16] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61–65, 1996.
- [17] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103– 108, 1993.
- [18] Beata Madras. Products of many sorted algebras. *Formalized Mathematics*, 5(1):55–60, 1996.
- [19] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
- [20] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.
- [21] Piotr Rudnicki and Andrzej Trybulec. Fixpoints in complete lattices. Formalized Mathematics, 6(1):109–115, 1997.
- [22] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.

446

- [23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
 [24] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
 [25] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.

- [26] Andrzej Trybulec. Defining by structural induction in the positive propositional language. Formalized Mathematics, 8(1):133–137, 1999.
- [27] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [29] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
- [30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(**1**):73–83, 1990.

Received July 4, 2000