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The articles [23], [29], [11], [28], [14], [2], [27], [12], [30], [8], [5], [3], [20], [9],
[6], [22], [7], [10], [1], [4], [15], [17], [18], [24], [25], [19], [16], [21], [13], and [26]
provide the notation and terminology for this paper.

1. PRELIMINARIES

One can prove the following propositions:
(1) For every integer ¢ holds i is even iff i — 1 is odd.
(2) For every integer ¢ holds 7 is odd iff i — 1 is even.
(3) Let X be a trivial set and x be a set. Suppose € X. Let f be a function
from X into X. Then z is a fixpoint of f.
Let A, B, C be sets. Note that every function from A into C? is function
yielding.
One can prove the following three propositions:
(4) For every function yielding function f holds Sub¢rng f = rng f.
(5) For all sets A, B, x and for every function f such that z € A and f € B4
holds f(z) € B.
(6) For all sets A, B, C such that if C = (), then B = () or A = () and for
every function f from A into C® holds dom,, f(k) = A — B.
Let us note that ) is function yielding.
In the sequel n is a natural number and p, g, r are elements of HP-WFF.
Next we state the proposition

(7) For every set z holds (z) = 0.
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Let A be a set and let B be a functional set. One can verify that every
function from A into B is function yielding.
One can prove the following propositions:
(8) For every set X and for every subset A of X holds [0 — 1,1 +—
0] - Xa,x = Xace,x.
(9) For every set X and for every subset A of X holds [0 — 1,1 +—
0] “XAe x = XA, X-
(10) For all sets a, b, x, y, ', ¢y’ such that a # b and [a — x,b — y] =
[a — 2/,b+— /] holds x = 2’ and y = ¢/.
(11) For all sets a, b, x, y, X, Y such that a # b and x € X and y € Y holds
[a — z,b—y] € [[lar— X,br—Y].
(12) For every non empty set D and for every function f from 2 into D there
exist elements dj, dy of D such that f = [0 +—— dj,1 — da].
(13) For all sets a, b, ¢, d such that a # b holds [a — ¢,b +— d] - [a —
b,br—a] =la+— d,b— .
(14) For all sets a, b, ¢, d and for every function f such that a # b and ¢ €
dom f and d € dom f holds f-[a — ¢,b— d] = [a — f(c),b+— f(d)].

2. THE CARTESIAN PRODUCT OF FUNCTIONS AND THE FREGE FUNCTION

Let f, g be one-to-one functions. Note that [ f, g ] is one-to-one.
We now state a number of propositions:
(15) Let A, B be non empty sets, C, D be sets, f be a function from C into A,
and g be a function from D into B. Then m (Ax B)-| f, g] = f-m1(Cx D).
(16) Let A, B be non empty sets, C, D be sets, f be a function from C into A,
and g be a function from D into B. Then mo(Ax B)-[ f, g1 = g-m2(C x D).
(17) For every function g holds @) <P g = 0.
(18) For every function yielding function f and for all functions g, h holds
fefg-h=(f-h)<t(g-h).
(19) Let C be a set, A be a non empty set, f be a function from A into
¢ auaset) 5nd g be a function from A into . Then rng(f <P g) = {0}.
(20) Let A, B, C be sets such that if B =, then A = (. Let f be a function
from A into C® and g be a function from A into B. Then rng(f <P g) C C.
(21) For all sets A, B, C such that if C' = (), then B =) or A = () and for
every function f from A into C® holds dom Frege(f) = B4.
(22) Frege(d) = {0} — 0.
(23) For all sets A, B, C such that if C' = (), then B = or A = () and for
every function f from A into C® holds rng Frege(f) C C4.
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(24) Let A, B, C be sets such that if C' = (), then B=0 or A = (. Let f be a
function from A into CB. Then Frege(f) is a function from B4 into CA.

3. ABOUT PERMUTATIONS

Let A be a set. Observe that every permutation of A is one-to-one.

The following proposition is true

(25) For all sets A, B and for every permutation P of A and for every per-
mutation @ of B holds [ P, @ ] is permutation-like.

Let A, B be non empty sets, let P be a permutation of A, and let Q be a
function from B into B. The functor P = Q yielding a function from B4 into
B4 is defined as follows:

(Def. 1)  For every function f from A into B holds (P = Q)(f) =Q - f- P~ L

Let A, B be non empty sets, let P be a permutation of A, and let Q) be a
permutation of B. Observe that P = @ is permutation-like.

Next we state three propositions:

(26) Let A, B be non empty sets, P be a permutation of A, @ be a permu-
tation of B, and f be a function from A into B. Then (P = Q) !(f) =
Qt-f-P

(27) For all non empty sets A, B and for every permutation P of A and for
every permutation Q of B holds (P = Q)~! =P~ = Q1.

(28) Let A, B, C be non empty sets, f be a function from A into CZ, g be a
function from A into B, P be a permutation of B, and () be a permutation
of C. Then (P=Q) - f)«P(P-g)=Q-f<Pg.

4. SET VALUATIONS

A SetValuation is a non-empty many sorted set indexed by N.
In the sequel V' denotes a SetValuation.
Let us consider V. The functor SetVal V' yielding a many sorted set indexed
by HP-WFF is defined by the conditions (Def. 2).
(Def. 2)(i)  (SetValV)(VERUM) = 1,
(ii)  for every n holds (SetValV')(propn) = V(n), and
(iii)  for all p, ¢ holds (SetValV)(p A q) = [ (SetValV)(p), (SetValV)(q) |
and (SetValV)(p = q) = (SetVal V)(g)SetValV)®),
Let us consider V', p. The functor SetVal(V, p) is defined as follows:
(Def. 3) SetVal(V,p) = (SetValV)(p).
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Let us consider V', p. One can check that SetVal(V,p) is non empty.
Next we state four propositions:
(29) SetVal(V,VERUM) = 1.
(30) SetVal(V,propn) = V(n).
(31) SetVal(V,p A q) = [ SetVal(V,p), SetVal(V, q) .
(32) SetVal(V,p = q) = (SetVal(V, q))SetVal(Ver),
Let us consider V', p, q. Observe that SetVal(V,p = ¢) is functional.
Let us consider V', p, ¢, r. Note that every element of SetVal(V,p = (¢ = r))
is function yielding.
Let us consider V', p, ¢, 7. One can check that there exists a function from
SetVal(V,p = ¢) into SetVal(V,p = r) which is function yielding and there
exists an element of SetVal(V,p = (¢ = r)) which is function yielding.

5. PERMUTING SET VALUATIONS

Let us consider V. A function is called a permutation of V if:
(Def. 4) domit = N and for every n holds it(n) is a permutation of V' (n).
In the sequel P is a permutation of V.
Let us consider V', P. The functor Perm P yielding a many sorted function
from SetVal V' into SetValV is defined by the conditions (Def. 5).
(Def. 5)(i)  (Perm P)(VERUM) = idy,
(ii)  for every m holds (Perm P)(propn) = P(n), and
(iii)  for all p, ¢ there exists a permutation p’ of SetVal(V,p) and there
exists a permutation ¢’ of SetVal(V, ¢) such that p’ = (Perm P)(p) and
¢ = (Perm P)(q) and (Perm P)(p A q) = [p', ¢'] and (Perm P)(p = q) =
P=q.
Let us consider V, P, p. The functor Perm(P,p) yields a function from
SetVal(V, p) into SetVal(V, p) and is defined by:
(Def. 6) Perm(P,p) = (Perm P)(p).

Next we state four propositions:

(33) Perm(P, VERUM) = idgetval(v,vERUM)-

(34) Perm(P,propn) = P(n).

(35) Perm(P,p A q) = [ Perm(P, p), Perm(P,q) ].

(36) For every permutation p’ of SetVal(V,p) and for every permutation ¢’

of SetVal(V,q) such that p’ = Perm(P,p) and ¢ = Perm(P,q) holds
Perm(P,p=q) =p = ¢ .
Let us consider V', P, p. One can check that Perm(P,p) is permutation-like.
We now state four propositions:
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(37) For every function g from SetVal(V,p) into SetVal(V,q) holds
(Perm(P, p = q))(g) = Perm(P, q) - g - (Perm(P, p))~".

(38) For every function ¢ from SetVal(V,p) into SetVal(V,q) holds
(Perm(P,p = q))~'(g) = (Perm(P, q))~" - g - Perm(P, p).

(39) For all functions f, g from SetVal(V,p) into SetVal(V,q) such that f =
(Perm(P,p = q))(g) holds Perm(P, q) - g = f - Perm(P, p).

(40) Let given V, P be a permutation of V, and = be a set. Suppose z is a
fixpoint of Perm(P, p). Let f be a function. If f is a fixpoint of Perm(P, p =
q), then f(z) is a fixpoint of Perm(P, q).

6. CANONICAL FORMULAE

Let us consider p. We say that p is canonical if and only if:

(Def. 7) For every V there exists a set  such that for every permutation P of V
holds z is a fixpoint of Perm(P, p).
Let us observe that VERUM is canonical.
Next we state several propositions:
41) p= (¢ = p) is canonical.

(p=(q=r1))=((p=q) = (p=r)) is canonical.

=
w N

p A g = p is canonical.
p A q = q is canonical.

N
ot

p = (¢ = pAq) is canonical.
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If p is canonical and p = ¢ is canonical, then ¢ is canonical.
If p € HP_TAUT, then p is canonical.

Let us observe that there exists an element of HP-WFF which is canonical.

7. PSEUDO-CANONICAL FORMULAE

Let us consider p. We say that p is pseudo-canonical if and only if:

(Def. 8) For every V and for every permutation P of V holds there exists a set
which is a fixpoint of Perm(P, p).

Let us observe that every element of HP-WFF which is canonical is also
pseudo-canonical.
One can prove the following propositions:
(48) p = (¢ = p) is pseudo-canonical.
(49) (p=(¢=r)) = ((p=q) = (p=r)) is pseudo-canonical.
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p A q = p is pseudo-canonical.

p A g = q is pseudo-canonical.

If p is pseudo-canonical and p = q is pseudo-canonical, then ¢ is pseudo-
canonical.

(54) Let given p, ¢, given V, and P be a permutation of V. Suppose there

exists a set which is a fixpoint of Perm(P, p) and there exists no set which
is a fixpoint of Perm(P,q). Then p = ¢ is not pseudo-canonical.

(55) ((prop0 = prop 1) = prop0) = prop0 is not pseudo-canonical.
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