The Concept of Fuzzy Relation and Basic Properties of its Operation

Takashi Mitsuishi
Shinshu University
Nagano

Katsumi Wasaki
Shinshu University
Nagano

Yasunari Shidama
Shinshu University
Nagano

Abstract

Summary. This article introduces the fuzzy relation. This is the expansion of usual relation, and the value is given at the fuzzy value. At first, the definition of the fuzzy relation characterized by membership function is described. Next, the definitions of the zero relation and universe relation and basic operations of these relations are shown.

MML Identifier: FUZZY_3.

The papers [8], [1], [5], [9], [3], [4], [6], [7], and [2] provide the terminology and notation for this paper.

1. Definition of Fuzzy Relation

In this paper C_{1}, C_{2} are non empty sets.
Let us consider C_{1}, C_{2}. A partial function from : C_{1}, C_{2} : to \mathbb{R} is said to be a Membership function of C_{1}, C_{2} if:
(Def. 1) dom it $=\left\{C_{1}, C_{2}\right\}$ and rng it $\subseteq[0,1]$.
The following proposition is true
(1) $\chi_{\left.\sharp C_{1}, C_{2}\right\},\left\{C_{1}, C_{2}\right\}}$ is a Membership function of C_{1}, C_{2}.

Let C_{1}, C_{2} be non empty sets and let h be a Membership function of C_{1}, C_{2}. A set is called a fuzzy relation of C_{1}, C_{2}, h if:
(Def. 2) It $=\mathrm{:}: C_{1}, C_{2} \ddagger, h^{\circ}: C_{1}, C_{2}$: j.
Let C_{1}, C_{2} be non empty sets, let h, g be Membership functions of C_{1}, C_{2}, let A be a fuzzy relation of C_{1}, C_{2}, h, and let B be a fuzzy relation of C_{1}, C_{2}, g. The predicate $A=B$ is defined by:
(Def. 3) For every element c of $: C_{1}, C_{2}$: holds $h(c)=g(c)$.
Let C_{1}, C_{2} be non empty sets, let h, g be Membership functions of C_{1}, C_{2}, let A be a fuzzy relation of C_{1}, C_{2}, h, and let B be a fuzzy relation of C_{1}, C_{2}, g. The predicate $A \subseteq B$ is defined by:
(Def. 4) For every element c of : C_{1}, C_{2} : holds $h(c) \leqslant g(c)$.
For simplicity, we adopt the following rules: f, g, h, h_{1} denote Membership functions of C_{1}, C_{2}, A denotes a fuzzy relation of C_{1}, C_{2}, f, B denotes a fuzzy relation of C_{1}, C_{2}, g, D denotes a fuzzy relation of C_{1}, C_{2}, h, and D_{1} denotes a fuzzy relation of C_{1}, C_{2}, h_{1}.

The following three propositions are true:
(2) $A=B$ iff $A \subseteq B$ and $B \subseteq A$.
(3) $A \subseteq A$.
(4) If $A \subseteq B$ and $B \subseteq D$, then $A \subseteq D$.

2. Intersection, Union and Complement

Let C_{1}, C_{2} be non empty sets and let h, g be Membership functions of C_{1}, C_{2}. The functor $\min (h, g)$ yielding a Membership function of C_{1}, C_{2} is defined as follows:
(Def. 5) For every element c of $: C_{1}, C_{2}$: holds $(\min (h, g))(c)=\min (h(c), g(c))$.
Let C_{1}, C_{2} be non empty sets and let h, g be Membership functions of C_{1}, C_{2}. The functor $\max (h, g)$ yields a Membership function of C_{1}, C_{2} and is defined by:
(Def. 6) For every element c of $: C_{1}, C_{2}$: holds $(\max (h, g))(c)=\max (h(c), g(c))$.
Let C_{1}, C_{2} be non empty sets and let h be a Membership function of C_{1}, C_{2}. The functor 1-minus h yields a Membership function of C_{1}, C_{2} and is defined as follows:
(Def. 7) For every element c of : C_{1}, C_{2} : holds (1-minus $\left.h\right)(c)=1-h(c)$.
Let C_{1}, C_{2} be non empty sets, let h, g be Membership functions of C_{1}, C_{2}, let A be a fuzzy relation of C_{1}, C_{2}, h, and let B be a fuzzy relation of C_{1}, C_{2}, g. The functor $A \cap B$ yields a fuzzy relation of $C_{1}, C_{2}, \min (h, g)$ and is defined as follows:
(Def. 8) $\quad A \cap B=\left[:\left[C_{1}, C_{2}:,(\min (h, g))^{\circ}: C_{1}, C_{2}:\right]\right.$.
Let C_{1}, C_{2} be non empty sets, let h, g be Membership functions of C_{1}, C_{2}, let A be a fuzzy relation of C_{1}, C_{2}, h, and let B be a fuzzy relation of C_{1}, C_{2}, g. The functor $A \cup B$ yielding a fuzzy relation of $C_{1}, C_{2}, \max (h, g)$ is defined by:
(Def. 9) $\quad A \cup B=\left[:\left[C_{1}, C_{2}:\right],(\max (h, g))^{\circ}: C_{1}, C_{2}:\right]$.

Let C_{1}, C_{2} be non empty sets, let h be a Membership function of C_{1}, C_{2}, and let A be a fuzzy relation of C_{1}, C_{2}, h. The functor A^{c} yielding a fuzzy relation of $C_{1}, C_{2}, 1$-minus h is defined as follows:
(Def. 10) $\quad A^{\mathrm{c}}=\mathrm{F}: C_{1}, C_{2} \mathrm{f},(1-\text { minus } h)^{\circ}: C_{1}, C_{2} \mathrm{j}$.
The following propositions are true:
(5) For every element x of : C_{1}, C_{2} ! holds $\min (h(x), g(x))=(\min (h, g))(x)$ and $\max (h(x), g(x))=(\max (h, g))(x)$.
(6) $\max (h, h)=h$ and $\min (h, h)=h$ and $\max (h, h)=\min (h, h)$ and $\min (f, g)=\min (g, f)$ and $\max (f, g)=\max (g, f)$.
(7) $f=g$ iff $A=B$.
(8) $A \cap A=A$ and $A \cup A=A$.
(9) $A \cap B=B \cap A$ and $A \cup B=B \cup A$.
(10) $\max (\max (f, g), h)=\max (f, \max (g, h))$ and $\min (\min (f, g), h)=$ $\min (f, \min (g, h))$.
(11) $(A \cup B) \cup D=A \cup(B \cup D)$.
(12) $(A \cap B) \cap D=A \cap(B \cap D)$.
(13) $\max (f, \min (f, g))=f$ and $\min (f, \max (f, g))=f$.
(14) $A \cup A \cap B=A$ and $A \cap(A \cup B)=A$.
(15) $\min (f, \max (g, h))=\max (\min (f, g), \min (f, h))$ and $\max (f, \min (g, h))=$ $\min (\max (f, g), \max (f, h))$.
(16) $A \cup B \cap D=(A \cup B) \cap(A \cup D)$ and $A \cap(B \cup D)=A \cap B \cup A \cap D$.
(17) 1-minus 1-minus $h=h$.
(18) $\left(A^{\mathrm{c}}\right)^{\mathrm{c}}=A$.
(19) 1 -minus $\max (f, g)=\min (1-\operatorname{minus} f, 1$-minus $g)$ and 1 -minus $\min (f, g)=$ $\max (1$-minus $f, 1$-minus $g)$.
(20) $(A \cup B)^{\mathrm{c}}=A^{\mathrm{c}} \cap B^{\mathrm{c}}$ and $(A \cap B)^{\mathrm{c}}=A^{\mathrm{c}} \cup B^{\mathrm{c}}$.
(21) $A \subseteq A \cup B$.
(22) If $A \subseteq D$ and $B \subseteq D$, then $A \cup B \subseteq D$.
(23) If $A \subseteq B$, then $A \cup D \subseteq B \cup D$.
(24) If $A \subseteq B$ and $D \subseteq D_{1}$, then $A \cup D \subseteq B \cup D_{1}$.
(25) If $A \subseteq B$, then $A \cup B=B$.
(26) $A \cap B \subseteq A$.
(27) $A \cap B \subseteq A \cup B$.
(28) If $D \subseteq A$ and $D \subseteq B$, then $D \subseteq A \cap B$.
(29) For all elements a, b, c, d of \mathbb{R} such that $a \leqslant b$ and $c \leqslant d$ holds $\min (a, c) \leqslant$ $\min (b, d)$.
(30) For all elements a, b, c of \mathbb{R} such that $a \leqslant b$ holds $\min (a, c) \leqslant \min (b, c)$.
(31) If $A \subseteq B$, then $A \cap D \subseteq B \cap D$.
(32) If $A \subseteq B$ and $D \subseteq D_{1}$, then $A \cap D \subseteq B \cap D_{1}$.
(33) If $A \subseteq B$, then $A \cap B=A$.
(34) If $A \cap B \cup A \cap D=A$, then $A \subseteq B \cup D$.
(35) $A=B \cup D$ iff $B \subseteq A$ and $D \subseteq A$ and for all h_{1}, D_{1} such that $B \subseteq D_{1}$ and $D \subseteq D_{1}$ holds $A \subseteq D_{1}$.
(36) $A=B \cap D$ iff $A \subseteq B$ and $A \subseteq D$ and for all h_{1}, D_{1} such that $D_{1} \subseteq B$ and $D_{1} \subseteq D$ holds $D_{1} \subseteq A$.
(37) $A \subseteq B$ iff $B^{\mathrm{c}} \subseteq A^{\mathrm{c}}$.
(38) If $A \subseteq B^{\mathrm{c}}$, then $B \subseteq A^{\mathrm{c}}$.
(39) If $A^{\mathrm{c}} \subseteq B$, then $B^{\mathrm{c}} \subseteq A$.
(40) $(A \cup B)^{\mathrm{c}} \subseteq A^{\mathrm{c}}$ and $(A \cup B)^{\mathrm{c}} \subseteq B^{\mathrm{c}}$.
(41) $\quad A^{\mathrm{c}} \subseteq(A \cap B)^{\mathrm{c}}$ and $B^{\mathrm{c}} \subseteq(A \cap B)^{\mathrm{c}}$.

3. Exclusive Sum

Let C_{1}, C_{2} be non empty sets, let h, g be Membership functions of C_{1}, C_{2}, let A be a fuzzy relation of C_{1}, C_{2}, h, and let B be a fuzzy relation of C_{1}, C_{2}, g. The functor $A \dot{-} B$ yields a fuzzy relation of $C_{1}, C_{2}, \max (\min (h, 1-\operatorname{minus} g)$, $\min (1$-minus $h, g))$ and is defined by:
(Def. 11) $A \dot{-} B=\left[: C_{1}, C_{2}\right\},(\max (\min (h, 1-\operatorname{minus} g), \min (1-\operatorname{minus} h, g)))^{\circ} ः C_{1}$, C_{2} : \cdot
The following propositions are true:
(42) $A \dot{-} B=A \cap B^{\mathrm{c}} \cup A^{\mathrm{c}} \cap B$.
(43) $A \doteq B=B \doteq A$.

4. Zero Relation and Universe Relation

Let C_{1}, C_{2} be non empty sets. A set is called a zero relation of C_{1}, C_{2} if:
(Def. 12) It $=:\left\{C_{1}, C_{2} \ddagger,\left(\chi_{\emptyset,\{ } C_{1}, C_{2} \sharp\right)^{\circ}: C_{1}, C_{2}\right.$! $]$.
Let C_{1}, C_{2} be non empty sets. A set is called a universe relation of C_{1}, C_{2} if:

In the sequel X is a universe relation of C_{1}, C_{2} and O is a zero relation of C_{1}, C_{2}.

The following proposition is true
(44) $\chi_{\emptyset,: C_{1}, C_{2}}$ is a Membership function of C_{1}, C_{2}.

Let C_{1}, C_{2} be non empty sets. The functor $\operatorname{Zmf}\left(C_{1}, C_{2}\right)$ yielding a Membership function of C_{1}, C_{2} is defined as follows:
(Def. 14) $\operatorname{Zmf}\left(C_{1}, C_{2}\right)=\chi_{\emptyset,:} C_{1}, C_{2}$.
Let C_{1}, C_{2} be non empty sets. The functor $\operatorname{Umf}\left(C_{1}, C_{2}\right)$ yields a Membership function of C_{1}, C_{2} and is defined as follows:
(Def. 15) $\operatorname{Umf}\left(C_{1}, C_{2}\right)=\chi_{\left\{C_{1}, C_{2}\right\},\left\{C_{1}, C_{2} \sharp\right.}$.
Next we state four propositions:
(45) Let h be a Membership function of C_{1}, C_{2}. If $h=\chi_{\left.\left\{: C_{1}, C_{2}\right\}, \mid C_{1}, C_{2}\right\} \text {, then }}$: : $C_{1}, C_{2} \sharp,\left(\chi_{\sharp C_{1}, C_{2}} \ddagger, C_{1}, C_{2} \ddagger\right)^{\circ}: C_{1}, C_{2}$: is a fuzzy relation of C_{1}, C_{2}, h.
(46) For every Membership function h of C_{1}, C_{2} such that $h=\chi_{\emptyset, 1} C_{1}, C_{2}$] holds $:$: C_{1}, C_{2} :, $\left.\left(\chi_{\emptyset,\{ }, C_{1}, C_{2}\right\}\right)^{\circ}: C_{1}, C_{2}$: is a fuzzy relation of C_{1}, C_{2}, h.
(47) O is a fuzzy relation of $C_{1}, C_{2}, \operatorname{Zmf}\left(C_{1}, C_{2}\right)$.
(48) X is a fuzzy relation of $C_{1}, C_{2}, \operatorname{Umf}\left(C_{1}, C_{2}\right)$.

Let C_{1}, C_{2} be non empty sets. We see that the zero relation of C_{1}, C_{2} is a fuzzy relation of $C_{1}, C_{2}, \operatorname{Zmf}\left(C_{1}, C_{2}\right)$.

Let C_{1}, C_{2} be non empty sets. We see that the universe relation of C_{1}, C_{2} is a fuzzy relation of $C_{1}, C_{2}, \operatorname{Umf}\left(C_{1}, C_{2}\right)$.

In the sequel X denotes a universe relation of C_{1}, C_{2} and O denotes a zero relation of C_{1}, C_{2}.

Next we state a number of propositions:
(49) Let a, b be elements of \mathbb{R} and f be a partial function from : C_{1}, C_{2} : to \mathbb{R}. Suppose $\operatorname{rng} f \subseteq[a, b]$ and $\operatorname{dom} f \neq \emptyset$ and $a \leqslant b$. Let x be an element of : C_{1}, C_{2}]. If $x \in \operatorname{dom} f$, then $a \leqslant f(x)$ and $f(x) \leqslant b$.
(50) $O \subseteq A$.
(51) $A \subseteq X$.
(52) For every element x of : $\left.C_{1}, C_{2}\right\}$ and for every Membership function h of C_{1}, C_{2} holds $\left(\operatorname{Zmf}\left(C_{1}, C_{2}\right)\right)(x) \leqslant h(x)$ and $h(x) \leqslant\left(\operatorname{Umf}\left(C_{1}, C_{2}\right)\right)(x)$.
(53) $\max \left(f, \operatorname{Umf}\left(C_{1}, C_{2}\right)\right)=\operatorname{Umf}\left(C_{1}, C_{2}\right)$ and $\min \left(f, \operatorname{Umf}\left(C_{1}, C_{2}\right)\right)=f$ and $\max \left(f, \operatorname{Zmf}\left(C_{1}, C_{2}\right)\right)=f$ and $\min \left(f, \operatorname{Zmf}\left(C_{1}, C_{2}\right)\right)=\operatorname{Zmf}\left(C_{1}, C_{2}\right)$.
(54) $A \cup X=X$ and $A \cap X=A$.
(55) $A \cup O=A$ and $A \cap O=O$.
(56) If $A \subseteq B$ and $A \subseteq D$ and $B \cap D=O$, then $A=O$.
(57) If $A \subseteq B$ and $B \cap D=O$, then $A \cap D=O$.
(58) If $A \subseteq O$, then $A=O$.
(59) $A \cup B=O$ iff $A=O$ and $B=O$.
(60) If $A \subseteq B \cup D$ and $A \cap D=O$, then $A \subseteq B$.
(61) 1-minus $\operatorname{Zmf}\left(C_{1}, C_{2}\right)=\operatorname{Umf}\left(C_{1}, C_{2}\right)$ and 1-minus $\operatorname{Umf}\left(C_{1}, C_{2}\right)=$ $\operatorname{Zmf}\left(C_{1}, C_{2}\right)$.
(62) $O^{\mathrm{c}}=X$ and $X^{\mathrm{c}}=O$.
(63) $A \dot{\circ} O=A$ and $O \dot{\oplus} A=A$.
(64) $A \dot{\circ}=A^{\mathrm{c}}$ and $X \doteq A=A^{\mathrm{c}}$.
(65) For every element c of $: C_{1}, C_{2}$] such that $f(c) \leqslant h(c)$ holds $(\max (f, \min (g, h)))(c)=(\min (\max (f, g), h))(c)$.
(66) If $A \subseteq D$, then $A \cup B \cap D=(A \cup B) \cap D$.

Let C_{1}, C_{2} be non empty sets, let f, g be Membership functions of C_{1}, C_{2}, let A be a fuzzy relation of C_{1}, C_{2}, f, and let B be a fuzzy relation of C_{1}, C_{2}, g. The functor $A \backslash B$ yielding a fuzzy relation of $C_{1}, C_{2}, \min (f, 1$-minus $g)$ is defined by:
(Def. 16) $A \backslash B=\left[: C_{1}, C_{2} \ddagger,(\min (f, 1-\operatorname{minus} g))^{\circ}: C_{1}, C_{2} \ddagger \mathfrak{j}\right.$.
One can prove the following propositions:
(67) $A \backslash B=A \cap B^{\mathrm{c}}$.
(68) 1 -minus $\min (f, 1$-minus $g)=\max (1-$ minus $f, g)$.
(69) $(A \backslash B)^{\mathrm{c}}=A^{\mathrm{c}} \cup B$.
(70) For every element c of $: C_{1}, C_{2}$] such that $f(c) \leqslant g(c)$ holds $(\min (f, 1$-minus $h))(c) \leqslant(\min (g, 1-$ minus $h))(c)$.
(71) If $A \subseteq B$, then $A \backslash D \subseteq B \backslash D$.
(72) For every element c of $: C_{1}, C_{2}$] such that $f(c) \leqslant g(c)$ holds $(\min (h, 1-\operatorname{minus} g))(c) \leqslant(\min (h, 1-\operatorname{minus} f))(c)$.
(73) If $A \subseteq B$, then $D \backslash B \subseteq D \backslash A$.
(74) For every element c of : C_{1}, C_{2} :] such that $f(c) \leqslant g(c)$ and $h(c) \leqslant h_{1}(c)$ holds $\left(\min \left(f, 1\right.\right.$-minus $\left.\left.h_{1}\right)\right)(c) \leqslant(\min (g, 1-\operatorname{minus} h))(c)$.
(75) If $A \subseteq B$ and $D \subseteq D_{1}$, then $A \backslash D_{1} \subseteq B \backslash D$.
(76) For every element c of $: C_{1}, C_{2}$: holds $(\min (f, 1$-minus $g))(c) \leqslant f(c)$.
(77) $A \backslash B \subseteq A$.
(78) For every element c of $\left\{C_{1}, C_{2}\right.$: holds $(\min (f, 1$-minus $g))(c) \leqslant$ $(\max (\min (f, 1-\operatorname{minus} g), \min (1-\operatorname{minus} f, g)))(c)$.
(79) $A \backslash B \subseteq A \doteq B$.
(80) $A \backslash O=A$.
(81) $O \backslash A=O$.
(82) For every element c of $: C_{1}, C_{2}$: holds $(\min (f, 1$-minus $g))(c) \leqslant$ $(\min (f, 1$-minus $\min (f, g)))(c)$.
(83) $A \backslash B \subseteq A \backslash A \cap B$.
(84) For every element c of : C_{1}, C_{2} : holds $(\max (\min (f, g), \min (f, 1-\operatorname{minus} g)))$ $(c) \leqslant f(c)$.
(85) For every element c of : C_{1}, C_{2} :] holds $(\max (f, \min (g, 1$-minus $f)))(c) \leqslant$ $(\max (f, g))(c)$.
(86) $A \cup(B \backslash A) \subseteq A \cup B$.
(87) $A \cap B \cup(A \backslash B) \subseteq A$.
(88) $\min (f, 1-\operatorname{minus} \min (g, 1-\operatorname{minus} h))=\max (\min (f, 1-\operatorname{minus} g), \min (f, h))$.
(89) $A \backslash(B \backslash D)=(A \backslash B) \cup A \cap D$.
(90) For every element c of $\left\{C_{1}, C_{2}\right\}$ holds $(\min (f, g))(c) \leqslant(\min (f, 1-\operatorname{minus} \min (f$, 1-minus $g)$))(c).
(91) $A \cap B \subseteq A \backslash(A \backslash B)$.
(92) For every element c of $: C_{1}, C_{2}$] holds $(\min (f, 1$-minus $g))(c) \leqslant$ $(\min (\max (f, g), 1-\operatorname{minus} g))(c)$.
(93) $A \backslash B \subseteq(A \cup B) \backslash B$.
(94) $\min (f, 1$-minus $\max (g, h))=\min (\min (f, 1-\operatorname{minus} g), \min (f, 1$-minus $h)$.
(95) $A \backslash(B \cup D)=(A \backslash B) \cap(A \backslash D)$.
(96) $\min (f, 1$-minus $\min (g, h))=\max (\min (f, 1-\operatorname{minus} g), \min (f, 1$-minus $h))$.
(97) $A \backslash B \cap D=(A \backslash B) \cup(A \backslash D)$.
(98) $\min (\min (f, 1$-minus $g), 1$-minus $h)=\min (f, 1-\operatorname{minus} \max (g, h))$.
(99) $A \backslash B \backslash D=A \backslash(B \cup D)$.
(100) For every element c of : C_{1}, C_{2} : holds $(\min (\max (f, g), 1$-minus $\min (f, g)))(c) \geqslant$ $(\max (\min (f, 1-\operatorname{minus} g), \min (g, 1-$ minus $f)))(c)$.
(101) $\quad(A \backslash B) \cup(B \backslash A) \subseteq(A \cup B) \backslash A \cap B$.
(102) $\min (\max (f, g), 1$-minus $h)=\max (\min (f, 1$-minus $h), \min (g, 1$-minus $h))$.
(103) $(A \cup B) \backslash D=(A \backslash D) \cup(B \backslash D)$.
(104) For every element c of : C_{1}, C_{2} : such that $(\min (f, 1$-minus $g))(c) \leqslant h(c)$ and $(\min (g, 1$-minus $f))(c) \leqslant h(c)$ holds $(\max (\min (f, 1-\operatorname{minus} g), \min (1-\operatorname{minus} f$, $g))(c) \leqslant h(c)$.
(105) If $A \backslash B \subseteq D$ and $B \backslash A \subseteq D$, then $A \dot{-} B \subseteq D$.
(106) $A \cap(B \backslash D)=A \cap B \backslash D$.
(107) For every element c of $\left\{C_{1}, C_{2}\right.$ \} holds $(\min (f, \min (g, 1$-minus $h))(c) \leqslant$ $(\min (\min (f, g), 1$-minus $\min (f, h)))(c)$.
(108) $A \cap(B \backslash D) \subseteq A \cap B \backslash A \cap D$.
(109) For every element c of : C_{1}, C_{2} : holds $(\min (\max (f, g), 1$-minus $\min (f, g)))(c) \geqslant$ $(\max (\min (f, 1-\operatorname{minus} g), \min (1-\operatorname{minus} f, g)))(c)$.
(110) $A \dot{\circ} \subseteq(A \cup B) \backslash A \cap B$.
(111) For every element c of $: C_{1}, C_{2}$] holds $(\max (\min (f, g), 1-\operatorname{minus} \max (f, g)))(c) \leqslant$ (1-minus $\max (\min (f, 1-\operatorname{minus} g), \min (1-\operatorname{minus} f, g)))(c)$.
(112) $A \cap B \cup(A \cup B)^{\mathrm{c}} \subseteq(A \dot{-} B)^{\mathrm{c}}$.
(113) $\min (\max (\min (f, 1-\operatorname{minus} g), \min (1-\operatorname{minus} f, g)), 1-\operatorname{minus} h)=\max (\min (f$, 1-minus max $(g, h)), \min (g, 1-\operatorname{minus} \max (f, h)))$.
(114) $(A \dot{\circ}) \backslash D=(A \backslash(B \cup D)) \cup(B \backslash(A \cup D))$.
(115) For every element c of $: C_{1}, C_{2}$: holds ($\min (f, 1$-minus $\max (\min (g$, 1 -minus $h), \min (1-\operatorname{minus} g, h)))(c) \geqslant(\max (\min (f, 1-\operatorname{minus} \max (g, h))$, $\min (\min (f, g), h)))(c)$.
(116) $(A \backslash(B \cup D)) \cup A \cap B \cap D \subseteq A \backslash(B \dot{\subset})$.
(117) For every element c of $: C_{1}, C_{2}$: such that $f(c) \leqslant g(c)$ holds $g(c) \geqslant$ $(\max (f, \min (g, 1$-minus $f)))(c)$.
(118) If $A \subseteq B$, then $A \cup(B \backslash A) \subseteq B$.
(119) For every element c of : C_{1}, C_{2} : holds $(\max (f, g))(c) \geqslant(\max (\max (\min (f$, 1-minus $g), \min (1-\operatorname{minus} f, g)), \min (f, g)))(c)$.
(120) $(A \subset B) \cup A \cap B \subseteq A \cup B$.
(121) If $\min (f, 1-\operatorname{minus} g)=\operatorname{Zmf}\left(C_{1}, C_{2}\right)$, then for every element c of : C_{1}, C_{2}; holds $f(c) \leqslant g(c)$.
(122) If $A \backslash B=O$, then $A \subseteq B$.
(123) If $\min (f, g)=\operatorname{Zmf}\left(C_{1}, C_{2}\right)$, then $\min (f, 1-\operatorname{minus} g)=f$.
(124) If $A \cap B=O$, then $A \backslash B=A$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[2] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[3] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[4] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[5] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[6] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[8] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[9] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

