Basic Properties of Extended Real Numbers

Noboru Endou Shinshu University Nagano Katsumi Wasaki Shinshu University Nagano Yasunari Shidama Shinshu University Nagano

Summary. We introduce product, quotient and absolute value, and we prove some basic properties of extended real numbers.

 $\label{eq:MML Identifier: EXTREAL1.} MML \ Identifier: \texttt{EXTREAL1.}$

The articles [3], [4], [5], [1], and [2] provide the notation and terminology for this paper.

1. Preliminaries

In this paper x, y, z denote extended real numbers and a denotes a real number.

One can prove the following propositions:

- (1) If $x \neq +\infty$ and $x \neq -\infty$, then x is a real number.
- (2) $-\infty < +\infty$.
- (3) If x < y, then $x \neq +\infty$ and $y \neq -\infty$.
- (4) $x = +\infty$ iff $-x = -\infty$ and $x = -\infty$ iff $-x = +\infty$.
- (5) If $x \neq +\infty$ or $y \neq -\infty$ and if $x \neq -\infty$ or $y \neq +\infty$, then x y = x + y.
- (6) If $x \neq +\infty$ or $y \neq +\infty$ and if $x \neq -\infty$ or $y \neq -\infty$, then x + -y = x y.
- (7) If $x \neq -\infty$ and $y \neq +\infty$ and $x \leq y$, then $x \neq +\infty$ and $y \neq -\infty$.
- (8) Suppose $x \neq +\infty$ or $y \neq -\infty$ but $x \neq -\infty$ or $y \neq +\infty$ and $y \neq +\infty$ or $z \neq -\infty$ but $y \neq -\infty$ or $z \neq +\infty$ and $x \neq +\infty$ or $z \neq -\infty$ but $x \neq -\infty$ or $z \neq +\infty$. Then (x + y) + z = x + (y + z).
- (9) If $-\infty < x$ and $x < +\infty$, then $x + -x = 0_{\overline{\mathbb{R}}}$ and $-x + x = 0_{\overline{\mathbb{R}}}$.

© 2001 University of Białystok ISSN 1426-2630

NOBORU ENDOU et al.

- (10) If $x \neq +\infty$ or $y \neq +\infty$ and if $x \neq -\infty$ or $y \neq -\infty$, then x y = x + -y.
- (11) Suppose $x \neq +\infty$ or $y \neq -\infty$ but $x \neq -\infty$ or $y \neq +\infty$ and $y \neq +\infty$ or $z \neq +\infty$ but $y \neq -\infty$ or $z \neq -\infty$ and $x + y \neq +\infty$ or $y z \neq -\infty$ but $x + y \neq -\infty$ or $y z \neq +\infty$. Then (x + y) z = x + (y z).

2. Operations of Multiplication, Quotient and Absolute Value on Extended Real Numbers

Let x, y be extended real numbers. The functor $x \cdot y$ yields an extended real number and is defined by the conditions (Def. 1).

(Def. 1)(i) There exist real numbers
$$a, b$$
 such that $x = a$ and $y = b$ and $x \cdot y = a \cdot b$,
or

- (ii) $0_{\overline{\mathbb{R}}} < x$ and $y = +\infty$ or $0_{\overline{\mathbb{R}}} < y$ and $x = +\infty$ or $x < 0_{\overline{\mathbb{R}}}$ and $y = -\infty$ or $y < 0_{\overline{\mathbb{R}}}$ and $x = -\infty$ but $x \cdot y = +\infty$, or
- (iii) $x < 0_{\overline{\mathbb{R}}}$ and $y = +\infty$ or $y < 0_{\overline{\mathbb{R}}}$ and $x = +\infty$ or $0_{\overline{\mathbb{R}}} < x$ and $y = -\infty$ or $0_{\overline{\mathbb{R}}} < y$ and $x = -\infty$ but $x \cdot y = -\infty$, or
- (iv) $x = 0_{\overline{\mathbb{R}}} \text{ or } y = 0_{\overline{\mathbb{R}}} \text{ but } x \cdot y = 0_{\overline{\mathbb{R}}}.$

The following propositions are true:

- (12) Let x, y be extended real numbers. Then
 - (i) there exist real numbers a, b such that x = a and y = b and $x \cdot y = a \cdot b$, or
 - (ii) $0_{\overline{\mathbb{R}}} < x$ and $y = +\infty$ or $0_{\overline{\mathbb{R}}} < y$ and $x = +\infty$ or $x < 0_{\overline{\mathbb{R}}}$ and $y = -\infty$ or $y < 0_{\overline{\mathbb{R}}}$ and $x = -\infty$ but $x \cdot y = +\infty$, or
- (iii) $x < 0_{\overline{\mathbb{R}}}$ and $y = +\infty$ or $y < 0_{\overline{\mathbb{R}}}$ and $x = +\infty$ or $0_{\overline{\mathbb{R}}} < x$ and $y = -\infty$ or $0_{\overline{\mathbb{R}}} < y$ and $x = -\infty$ but $x \cdot y = -\infty$, or
- (iv) $x = 0_{\overline{\mathbb{R}}}$ or $y = 0_{\overline{\mathbb{R}}}$ but $x \cdot y = 0_{\overline{\mathbb{R}}}$.
- (13) For all extended real numbers x, y and for all real numbers a, b such that x = a and y = b holds $x \cdot y = a \cdot b$.
- (14) For every extended real number x such that $0_{\mathbb{R}} < x$ holds $+\infty \cdot x = +\infty$ and $x \cdot +\infty = +\infty$ and $-\infty \cdot x = -\infty$ and $x \cdot -\infty = -\infty$.
- (15) For every extended real number x such that $x < 0_{\overline{\mathbb{R}}}$ holds $+\infty \cdot x = -\infty$ and $x \cdot +\infty = -\infty$ and $-\infty \cdot x = +\infty$ and $x \cdot -\infty = +\infty$.
- (16) For all extended real numbers x, y such that $x = 0_{\overline{\mathbb{R}}}$ holds $x \cdot y = 0_{\overline{\mathbb{R}}}$ and $y \cdot x = 0_{\overline{\mathbb{R}}}$.

(17) For all extended real numbers x, y holds $x \cdot y = y \cdot x$.

Let x, y be extended real numbers. Let us notice that the functor $x \cdot y$ is commutative.

One can prove the following propositions:

(18) If x = a, then 0 < a iff $0_{\overline{\mathbb{R}}} < x$.

- (19) If x = a, then a < 0 iff $x < 0_{\overline{\mathbb{R}}}$.
- (20) If $0_{\overline{\mathbb{R}}} < x$ and $0_{\overline{\mathbb{R}}} < y$ or $x < 0_{\overline{\mathbb{R}}}$ and $y < 0_{\overline{\mathbb{R}}}$, then $0_{\overline{\mathbb{R}}} < x \cdot y$.
- (21) If $0_{\overline{\mathbb{R}}} < x$ and $y < 0_{\overline{\mathbb{R}}}$ or $x < 0_{\overline{\mathbb{R}}}$ and $0_{\overline{\mathbb{R}}} < y$, then $x \cdot y < 0_{\overline{\mathbb{R}}}$.
- (22) $x \cdot y = 0_{\overline{\mathbb{R}}}$ iff $x = 0_{\overline{\mathbb{R}}}$ or $y = 0_{\overline{\mathbb{R}}}$.
- (23) $(x \cdot y) \cdot z = x \cdot (y \cdot z).$
- $(24) \quad -0_{\overline{\mathbb{R}}} = 0_{\overline{\mathbb{R}}}.$
- (25) $0_{\overline{\mathbb{R}}} < x \text{ iff } -x < 0_{\overline{\mathbb{R}}} \text{ and } x < 0_{\overline{\mathbb{R}}} \text{ iff } 0_{\overline{\mathbb{R}}} < -x.$
- (26) $-x \cdot y = x \cdot -y$ and $-x \cdot y = (-x) \cdot y$.
- (27) If $x \neq +\infty$ and $x \neq -\infty$ and $x \cdot y = +\infty$, then $y = +\infty$ or $y = -\infty$.
- (28) If $x \neq +\infty$ and $x \neq -\infty$ and $x \cdot y = -\infty$, then $y = +\infty$ or $y = -\infty$.
- (29) If $y \neq +\infty$ or $z \neq -\infty$ but $y \neq -\infty$ or $z \neq +\infty$ and $x \neq +\infty$ and $x \neq -\infty$, then $x \cdot (y+z) = x \cdot y + x \cdot z$.
- (30) If $y \neq +\infty$ or $z \neq +\infty$ but $y \neq -\infty$ or $z \neq -\infty$ and $x \neq +\infty$ and $x \neq -\infty$, then $x \cdot (y z) = x \cdot y x \cdot z$.

Let x, y be extended real numbers. Let us assume that $x = -\infty$ or $x = +\infty$ but $y = -\infty$ or $y = +\infty$ but $y \neq 0_{\overline{\mathbb{R}}}$. The functor $\frac{x}{y}$ yielding an extended real number is defined by the conditions (Def. 2).

(Def. 2)(i) There exist real numbers a, b such that x = a and y = b and $\frac{x}{y} = \frac{a}{b}$, or

- (ii) $x = +\infty$ and $0_{\overline{\mathbb{R}}} < y$ or $x = -\infty$ and $y < 0_{\overline{\mathbb{R}}}$ but $\frac{x}{y} = +\infty$, or
- (iii) $x = -\infty$ and $0_{\overline{\mathbb{R}}} < y$ or $x = +\infty$ and $y < 0_{\overline{\mathbb{R}}}$ but $\frac{x}{y} = -\infty$, or
- (iv) $y = -\infty$ or $y = +\infty$ but $\frac{x}{y} = 0_{\overline{\mathbb{R}}}$.

The following four propositions are true:

- (31) Let x, y be extended real numbers. Suppose $x = -\infty$ or $x = +\infty$ but $y = -\infty$ or $y = +\infty$ but $y \neq 0_{\overline{\mathbb{R}}}$. Then
 - (i) there exist real numbers a, b such that x = a and y = b and $\frac{x}{y} = \frac{a}{b}$, or
 - (ii) $x = +\infty$ and $0_{\overline{\mathbb{R}}} < y$ or $x = -\infty$ and $y < 0_{\overline{\mathbb{R}}}$ but $\frac{x}{y} = +\infty$, or
- (iii) $x = -\infty$ and $0_{\overline{\mathbb{R}}} < y$ or $x = +\infty$ and $y < 0_{\overline{\mathbb{R}}}$ but $\frac{\tilde{x}}{y} = -\infty$, or
- (iv) $y = -\infty$ or $y = +\infty$ but $\frac{x}{y} = 0_{\overline{\mathbb{R}}}$.
- (32) Let x, y be extended real numbers. Suppose $y \neq 0_{\overline{\mathbb{R}}}$. Let a, b be real numbers. If x = a and y = b, then $\frac{x}{y} = \frac{a}{b}$.
- (33) For all extended real numbers x, y such that $x \neq -\infty$ but $x \neq +\infty$ but $y = -\infty$ or $y = +\infty$ holds $\frac{x}{y} = 0_{\mathbb{R}}$.
- (34) For every extended real number x such that $x \neq -\infty$ and $x \neq +\infty$ and $x \neq 0_{\overline{\mathbb{R}}}$ holds $\frac{x}{x} = 1$.

Let x be an extended real number. The functor |x| yielding an extended real number is defined as follows:

(Def. 3)
$$|x| = \begin{cases} x, \text{ if } 0_{\overline{\mathbb{R}}} \leq x, \\ -x, \text{ otherwise.} \end{cases}$$

One can prove the following propositions:

- (35) For every extended real number x such that $0_{\overline{\mathbb{R}}} \leq x$ holds |x| = x.
- (36) For every extended real number x such that $0_{\overline{\mathbb{R}}} < x$ holds |x| = x.
- (37) For every extended real number x such that $x < 0_{\overline{\mathbb{R}}}$ holds |x| = -x.
- (38) For all real numbers a, b holds $\overline{\mathbb{R}}(a \cdot b) = \overline{\mathbb{R}}(a) \cdot \overline{\mathbb{R}}(b)$.
- (39) For all real numbers a, b such that $b \neq 0$ holds $\overline{\mathbb{R}}(\frac{a}{b}) = \frac{\overline{\mathbb{R}}(a)}{\overline{\mathbb{R}}(b)}$
- (40) For all extended real numbers x, y such that $x \leq y$ and $x < +\infty$ and $-\infty < y$ holds $0_{\overline{\mathbb{R}}} \leq y x$.
- (41) For all extended real numbers x, y such that x < y and $x < +\infty$ and $-\infty < y$ holds $0_{\overline{\mathbb{R}}} < y x$.
- (42) If $x \leq y$ and $0_{\overline{\mathbb{R}}} \leq z$, then $x \cdot z \leq y \cdot z$.
- (43) If $x \leq y$ and $z \leq 0_{\overline{\mathbb{R}}}$, then $y \cdot z \leq x \cdot z$.
- $(44) \quad \text{If } x < y \text{ and } 0_{\overline{\mathbb{R}}} < z \text{ and } z \neq +\infty, \text{ then } x \cdot z < y \cdot z.$
- (45) If x < y and $z < 0_{\mathbb{R}}$ and $z \neq -\infty$, then $y \cdot z < x \cdot z$.
- (46) Suppose x is a real number and y is a real number. Then x < y if and only if there exist real numbers p, q such that p = x and q = y and p < q.
- (47) If $x \neq -\infty$ and $y \neq +\infty$ and $x \leq y$ and $0_{\overline{\mathbb{R}}} < z$, then $\frac{x}{z} \leq \frac{y}{z}$.
- (48) If $x \leq y$ and $0_{\overline{\mathbb{R}}} < z$ and $z \neq +\infty$, then $\frac{x}{z} \leq \frac{y}{z}$.
- (49) If $x \neq -\infty$ and $y \neq +\infty$ and $x \leq y$ and $z < 0_{\overline{\mathbb{R}}}$, then $\frac{y}{z} \leq \frac{x}{z}$.
- (50) If $x \leq y$ and $z < 0_{\overline{\mathbb{R}}}$ and $z \neq -\infty$, then $\frac{y}{z} \leq \frac{x}{z}$.
- (51) If x < y and $0_{\overline{\mathbb{R}}} < z$ and $z \neq +\infty$, then $\frac{x}{z} < \frac{y}{z}$.
- (52) If x < y and $z < 0_{\overline{\mathbb{R}}}$ and $z \neq -\infty$, then $\frac{y}{z} < \frac{x}{z}$.

References

- Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163–171, 1991.
- [2] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173–183, 1991.
- [3] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21–26, 1996.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received September 7, 2000