# Basic Properties of Extended Real Numbers 

Noboru Endou<br>Shinshu University<br>Nagano

Katsumi Wasaki<br>Shinshu University<br>Nagano

Yasunari Shidama<br>Shinshu University<br>Nagano


#### Abstract

Summary. We introduce product, quotient and absolute value, and we prove some basic properties of extended real numbers.


MML Identifier: EXTREAL1.

The articles [3], [4], [5], [1], and [2] provide the notation and terminology for this paper.

## 1. Preliminaries

In this paper $x, y, z$ denote extended real numbers and $a$ denotes a real number.

One can prove the following propositions:
(1) If $x \neq+\infty$ and $x \neq-\infty$, then $x$ is a real number.
(2) $-\infty<+\infty$.
(3) If $x<y$, then $x \neq+\infty$ and $y \neq-\infty$.
(4) $x=+\infty$ iff $-x=-\infty$ and $x=-\infty$ iff $-x=+\infty$.
(5) If $x \neq+\infty$ or $y \neq-\infty$ and if $x \neq-\infty$ or $y \neq+\infty$, then $x--y=x+y$.
(6) If $x \neq+\infty$ or $y \neq+\infty$ and if $x \neq-\infty$ or $y \neq-\infty$, then $x+-y=x-y$.
(7) If $x \neq-\infty$ and $y \neq+\infty$ and $x \leqslant y$, then $x \neq+\infty$ and $y \neq-\infty$.
(8) Suppose $x \neq+\infty$ or $y \neq-\infty$ but $x \neq-\infty$ or $y \neq+\infty$ and $y \neq+\infty$ or $z \neq-\infty$ but $y \neq-\infty$ or $z \neq+\infty$ and $x \neq+\infty$ or $z \neq-\infty$ but $x \neq-\infty$ or $z \neq+\infty$. Then $(x+y)+z=x+(y+z)$.
(9) If $-\infty<x$ and $x<+\infty$, then $x+-x=0_{\overline{\mathbb{R}}}$ and $-x+x=0_{\overline{\mathbb{R}}}$.
(10) If $x \neq+\infty$ or $y \neq+\infty$ and if $x \neq-\infty$ or $y \neq-\infty$, then $x-y=x+-y$.
(11) Suppose $x \neq+\infty$ or $y \neq-\infty$ but $x \neq-\infty$ or $y \neq+\infty$ and $y \neq+\infty$ or $z \neq+\infty$ but $y \neq-\infty$ or $z \neq-\infty$ and $x+y \neq+\infty$ or $y-z \neq-\infty$ but $x+y \neq-\infty$ or $y-z \neq+\infty$. Then $(x+y)-z=x+(y-z)$.

## 2. Operations of Multiplication, Quotient and Absolute Value on Extended Real Numbers

Let $x, y$ be extended real numbers. The functor $x \cdot y$ yields an extended real number and is defined by the conditions (Def. 1).
(Def. 1)(i) There exist real numbers $a, b$ such that $x=a$ and $y=b$ and $x \cdot y=a \cdot b$, or
(ii) $\quad 0_{\overline{\mathbb{R}}}<x$ and $y=+\infty$ or $0_{\overline{\mathbb{R}}}<y$ and $x=+\infty$ or $x<0_{\overline{\mathbb{R}}}$ and $y=-\infty$ or $y<0_{\overline{\mathbb{R}}}$ and $x=-\infty$ but $x \cdot y=+\infty$, or
(iii) $\quad x<0_{\overline{\mathbb{R}}}$ and $y=+\infty$ or $y<0_{\overline{\mathbb{R}}}$ and $x=+\infty$ or $0_{\overline{\mathbb{R}}}<x$ and $y=-\infty$ or $0_{\overline{\mathbb{R}}}<y$ and $x=-\infty$ but $x \cdot y=-\infty$, or
(iv) $\quad x=0_{\overline{\mathbb{R}}}$ or $y=0_{\overline{\mathbb{R}}}$ but $x \cdot y=0_{\overline{\mathbb{R}}}$.

The following propositions are true:
(12) Let $x, y$ be extended real numbers. Then
(i) there exist real numbers $a, b$ such that $x=a$ and $y=b$ and $x \cdot y=a \cdot b$, or
(ii) $\quad 0_{\overline{\mathbb{R}}}<x$ and $y=+\infty$ or $0_{\overline{\mathbb{R}}}<y$ and $x=+\infty$ or $x<0_{\overline{\mathbb{R}}}$ and $y=-\infty$ or $y<0_{\overline{\mathbb{R}}}$ and $x=-\infty$ but $x \cdot y=+\infty$, or
(iii) $\quad x<0_{\overline{\mathbb{R}}}$ and $y=+\infty$ or $y<0_{\overline{\mathbb{R}}}$ and $x=+\infty$ or $0_{\overline{\mathbb{R}}}<x$ and $y=-\infty$ or $0_{\overline{\mathbb{R}}}<y$ and $x=-\infty$ but $x \cdot y=-\infty$, or
(iv) $\quad x=0_{\overline{\mathbb{R}}}$ or $y=0_{\overline{\mathbb{R}}}$ but $x \cdot y=0_{\overline{\mathbb{R}}}$.
(13) For all extended real numbers $x, y$ and for all real numbers $a, b$ such that $x=a$ and $y=b$ holds $x \cdot y=a \cdot b$.
(14) For every extended real number $x$ such that $0_{\overline{\mathbb{R}}}<x$ holds $+\infty \cdot x=+\infty$ and $x \cdot+\infty=+\infty$ and $-\infty \cdot x=-\infty$ and $x \cdot-\infty=-\infty$.
(15) For every extended real number $x$ such that $x<0_{\overline{\mathbb{R}}}$ holds $+\infty \cdot x=-\infty$ and $x \cdot+\infty=-\infty$ and $-\infty \cdot x=+\infty$ and $x \cdot-\infty=+\infty$.
(16) For all extended real numbers $x, y$ such that $x=0_{\overline{\mathbb{R}}}$ holds $x \cdot y=0_{\overline{\mathbb{R}}}$ and $y \cdot x=0_{\overline{\mathbb{R}}}$.
(17) For all extended real numbers $x, y$ holds $x \cdot y=y \cdot x$.

Let $x, y$ be extended real numbers. Let us notice that the functor $x \cdot y$ is commutative.

One can prove the following propositions:
(18) If $x=a$, then $0<a$ iff $0_{\overline{\mathbb{R}}}<x$.
(19) If $x=a$, then $a<0$ iff $x<0_{\overline{\mathbb{R}}}$.
(20) If $0_{\overline{\mathbb{R}}}<x$ and $0_{\overline{\mathbb{R}}}<y$ or $x<0_{\overline{\mathbb{R}}}$ and $y<0_{\overline{\mathbb{R}}}$, then $0_{\overline{\mathbb{R}}}<x \cdot y$.
(21) If $0_{\overline{\mathbb{R}}}<x$ and $y<0_{\overline{\mathbb{R}}}$ or $x<0_{\overline{\mathbb{R}}}$ and $0_{\overline{\mathbb{R}}}<y$, then $x \cdot y<0_{\overline{\mathbb{R}}}$.
(22) $\quad x \cdot y=0_{\overline{\mathbb{R}}}$ iff $x=0_{\overline{\mathbb{R}}}$ or $y=0_{\overline{\mathbb{R}}}$.
(23) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
(24) $-0_{\overline{\mathbb{R}}}=0_{\overline{\mathbb{R}}}$.
(25) $0_{\overline{\mathbb{R}}}<x$ iff $-x<0_{\overline{\mathbb{R}}}$ and $x<0_{\overline{\mathbb{R}}}$ iff $0_{\overline{\mathbb{R}}}<-x$.
(26) $-x \cdot y=x \cdot-y$ and $-x \cdot y=(-x) \cdot y$.
(27) If $x \neq+\infty$ and $x \neq-\infty$ and $x \cdot y=+\infty$, then $y=+\infty$ or $y=-\infty$.
(28) If $x \neq+\infty$ and $x \neq-\infty$ and $x \cdot y=-\infty$, then $y=+\infty$ or $y=-\infty$.
(29) If $y \neq+\infty$ or $z \neq-\infty$ but $y \neq-\infty$ or $z \neq+\infty$ and $x \neq+\infty$ and $x \neq-\infty$, then $x \cdot(y+z)=x \cdot y+x \cdot z$.
(30) If $y \neq+\infty$ or $z \neq+\infty$ but $y \neq-\infty$ or $z \neq-\infty$ and $x \neq+\infty$ and $x \neq-\infty$, then $x \cdot(y-z)=x \cdot y-x \cdot z$.
Let $x, y$ be extended real numbers. Let us assume that $x=-\infty$ or $x=+\infty$ but $y=-\infty$ or $y=+\infty$ but $y \neq 0_{\overline{\mathbb{R}}}$. The functor $\frac{x}{y}$ yielding an extended real number is defined by the conditions (Def. 2).
(Def. 2)(i) There exist real numbers $a, b$ such that $x=a$ and $y=b$ and $\frac{x}{y}=\frac{a}{b}$, or
(ii) $\quad x=+\infty$ and $0_{\overline{\mathbb{R}}}<y$ or $x=-\infty$ and $y<0_{\overline{\mathbb{R}}}$ but $\frac{x}{y}=+\infty$, or
(iii) $\quad x=-\infty$ and $0_{\overline{\mathbb{R}}}<y$ or $x=+\infty$ and $y<0_{\overline{\mathbb{R}}}$ but $\frac{x}{y}=-\infty$, or
(iv) $y=-\infty$ or $y=+\infty$ but $\frac{x}{y}=0_{\overline{\mathbb{R}}}$.

The following four propositions are true:
(31) Let $x, y$ be extended real numbers. Suppose $x=-\infty$ or $x=+\infty$ but $y=-\infty$ or $y=+\infty$ but $y \neq 0_{\overline{\mathbb{R}}}$. Then
(i) there exist real numbers $a, b$ such that $x=a$ and $y=b$ and $\frac{x}{y}=\frac{a}{b}$, or
(ii) $\quad x=+\infty$ and $0_{\overline{\mathbb{R}}}<y$ or $x=-\infty$ and $y<0_{\overline{\mathbb{R}}}$ but $\frac{x}{y}=+\infty$, or
(iii) $\quad x=-\infty$ and $0_{\overline{\mathbb{R}}}<y$ or $x=+\infty$ and $y<0_{\overline{\mathbb{R}}}$ but $\frac{x}{y}=-\infty$, or
(iv) $y=-\infty$ or $y=+\infty$ but $\frac{x}{y}=0_{\overline{\mathbb{R}}}$.
(32) Let $x, y$ be extended real numbers. Suppose $y \neq 0_{\overline{\mathbb{R}}}$. Let $a, b$ be real numbers. If $x=a$ and $y=b$, then $\frac{x}{y}=\frac{a}{b}$.
(33) For all extended real numbers $x, y$ such that $x \neq-\infty$ but $x \neq+\infty$ but $y=-\infty$ or $y=+\infty$ holds $\frac{x}{y}=0_{\overline{\mathbb{R}}}$.
(34) For every extended real number $x$ such that $x \neq-\infty$ and $x \neq+\infty$ and $x \neq 0_{\overline{\mathbb{R}}}$ holds $\frac{x}{x}=1$.
Let $x$ be an extended real number. The functor $|x|$ yielding an extended real number is defined as follows:
(Def. 3) $\quad|x|=\left\{\begin{array}{l}x, \text { if } 0_{\overline{\mathbb{R}}} \leqslant x, \\ -x, \text { otherwise } .\end{array}\right.$

One can prove the following propositions:
(35) For every extended real number $x$ such that $0_{\overline{\mathbb{R}}} \leqslant x$ holds $|x|=x$.
(36) For every extended real number $x$ such that $0_{\overline{\mathbb{R}}}<x$ holds $|x|=x$.
(37) For every extended real number $x$ such that $x<0_{\overline{\mathbb{R}}}$ holds $|x|=-x$.
(38) For all real numbers $a, b$ holds $\overline{\mathbb{R}}(a \cdot b)=\overline{\mathbb{R}}(a) \cdot \overline{\mathbb{R}}(b)$.
(39) For all real numbers $a, b$ such that $b \neq 0$ holds $\overline{\mathbb{R}}\left(\frac{a}{b}\right)=\frac{\overline{\mathbb{R}}(a)}{\overline{\mathbb{R}}(b)}$.
(40) For all extended real numbers $x, y$ such that $x \leqslant y$ and $x<+\infty$ and $-\infty<y$ holds $0_{\overline{\mathbb{R}}} \leqslant y-x$.
(41) For all extended real numbers $x, y$ such that $x<y$ and $x<+\infty$ and $-\infty<y$ holds $0_{\overline{\mathbb{R}}}<y-x$.
(42) If $x \leqslant y$ and $0_{\overline{\mathbb{R}}} \leqslant z$, then $x \cdot z \leqslant y \cdot z$.
(43) If $x \leqslant y$ and $z \leqslant 0_{\overline{\mathbb{R}}}$, then $y \cdot z \leqslant x \cdot z$.
(44) If $x<y$ and $0_{\overline{\mathbb{R}}}<z$ and $z \neq+\infty$, then $x \cdot z<y \cdot z$.
(45) If $x<y$ and $z<0_{\overline{\mathbb{R}}}$ and $z \neq-\infty$, then $y \cdot z<x \cdot z$.
(46) Suppose $x$ is a real number and $y$ is a real number. Then $x<y$ if and only if there exist real numbers $p, q$ such that $p=x$ and $q=y$ and $p<q$.
(47) If $x \neq-\infty$ and $y \neq+\infty$ and $x \leqslant y$ and $0_{\overline{\mathbb{R}}}<z$, then $\frac{x}{z} \leqslant \frac{y}{z}$.
(48) If $x \leqslant y$ and $0_{\overline{\mathbb{R}}}<z$ and $z \neq+\infty$, then $\frac{x}{z} \leqslant \frac{y}{z}$.
(49) If $x \neq-\infty$ and $y \neq+\infty$ and $x \leqslant y$ and $z<0_{\overline{\mathbb{R}}}$, then $\frac{y}{z} \leqslant \frac{x}{z}$.
(50) If $x \leqslant y$ and $z<0_{\overline{\mathbb{R}}}$ and $z \neq-\infty$, then $\frac{y}{z} \leqslant \frac{x}{z}$.
(51) If $x<y$ and $0_{\overline{\mathbb{R}}}<z$ and $z \neq+\infty$, then $\frac{x}{z}<\frac{y}{z}$.
(52) If $x<y$ and $z<0_{\overline{\mathbb{R}}}$ and $z \neq-\infty$, then $\frac{y}{z}<\frac{x}{z}$.

## References

[1] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[2] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[3] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

