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Summary. We introduce product, quotient and absolute value, and we
prove some basic properties of extended real numbers.

MML Identifier: EXTREAL1.

The articles [3], [4], [5], [1], and [2] provide the notation and terminology for

this paper.

1. Preliminaries

In this paper x, y, z denote extended real numbers and a denotes a real

number.

One can prove the following propositions:

(1) If x 6= +∞ and x 6= −∞, then x is a real number.

(2) −∞ < +∞.

(3) If x < y, then x 6= +∞ and y 6= −∞.

(4) x = +∞ iff −x = −∞ and x = −∞ iff −x = +∞.

(5) If x 6= +∞ or y 6= −∞ and if x 6= −∞ or y 6= +∞, then x−−y = x+ y.

(6) If x 6= +∞ or y 6= +∞ and if x 6= −∞ or y 6= −∞, then x+−y = x− y.

(7) If x 6= −∞ and y 6= +∞ and x ¬ y, then x 6= +∞ and y 6= −∞.

(8) Suppose x 6= +∞ or y 6= −∞ but x 6= −∞ or y 6= +∞ and y 6= +∞ or

z 6= −∞ but y 6= −∞ or z 6= +∞ and x 6= +∞ or z 6= −∞ but x 6= −∞

or z 6= +∞. Then (x + y) + z = x + (y + z).

(9) If −∞ < x and x < +∞, then x +−x = 0
R
and −x + x = 0

R
.
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(10) If x 6= +∞ or y 6= +∞ and if x 6= −∞ or y 6= −∞, then x− y = x+−y.

(11) Suppose x 6= +∞ or y 6= −∞ but x 6= −∞ or y 6= +∞ and y 6= +∞ or

z 6= +∞ but y 6= −∞ or z 6= −∞ and x + y 6= +∞ or y − z 6= −∞ but

x + y 6= −∞ or y − z 6= +∞. Then (x + y)− z = x + (y − z).

2. Operations of Multiplication, Quotient and Absolute Value on

Extended Real Numbers

Let x, y be extended real numbers. The functor x · y yields an extended real

number and is defined by the conditions (Def. 1).

(Def. 1)(i) There exist real numbers a, b such that x = a and y = b and x·y = a·b,

or

(ii) 0
R

< x and y = +∞ or 0
R

< y and x = +∞ or x < 0
R
and y = −∞

or y < 0
R
and x = −∞ but x · y = +∞, or

(iii) x < 0
R
and y = +∞ or y < 0

R
and x = +∞ or 0

R
< x and y = −∞

or 0
R

< y and x = −∞ but x · y = −∞, or

(iv) x = 0
R
or y = 0

R
but x · y = 0

R
.

The following propositions are true:

(12) Let x, y be extended real numbers. Then

(i) there exist real numbers a, b such that x = a and y = b and x ·y = a · b,

or

(ii) 0
R

< x and y = +∞ or 0
R

< y and x = +∞ or x < 0
R
and y = −∞

or y < 0
R
and x = −∞ but x · y = +∞, or

(iii) x < 0
R
and y = +∞ or y < 0

R
and x = +∞ or 0

R
< x and y = −∞

or 0
R

< y and x = −∞ but x · y = −∞, or

(iv) x = 0
R
or y = 0

R
but x · y = 0

R
.

(13) For all extended real numbers x, y and for all real numbers a, b such

that x = a and y = b holds x · y = a · b.

(14) For every extended real number x such that 0
R

< x holds +∞·x = +∞

and x ·+∞ = +∞ and −∞ · x = −∞ and x · −∞ = −∞.

(15) For every extended real number x such that x < 0
R
holds +∞·x = −∞

and x ·+∞ = −∞ and −∞ · x = +∞ and x · −∞ = +∞.

(16) For all extended real numbers x, y such that x = 0
R
holds x ·y = 0

R
and

y · x = 0
R
.

(17) For all extended real numbers x, y holds x · y = y · x.

Let x, y be extended real numbers. Let us notice that the functor x · y is

commutative.

One can prove the following propositions:

(18) If x = a, then 0 < a iff 0
R

< x.
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(19) If x = a, then a < 0 iff x < 0
R
.

(20) If 0
R

< x and 0
R

< y or x < 0
R
and y < 0

R
, then 0

R
< x · y.

(21) If 0
R

< x and y < 0
R
or x < 0

R
and 0

R
< y, then x · y < 0

R
.

(22) x · y = 0
R
iff x = 0

R
or y = 0

R
.

(23) (x · y) · z = x · (y · z).

(24) −0
R

= 0
R
.

(25) 0
R

< x iff −x < 0
R
and x < 0

R
iff 0

R
< −x.

(26) −x · y = x · −y and −x · y = (−x) · y.

(27) If x 6= +∞ and x 6= −∞ and x · y = +∞, then y = +∞ or y = −∞.

(28) If x 6= +∞ and x 6= −∞ and x · y = −∞, then y = +∞ or y = −∞.

(29) If y 6= +∞ or z 6= −∞ but y 6= −∞ or z 6= +∞ and x 6= +∞ and

x 6= −∞, then x · (y + z) = x · y + x · z.

(30) If y 6= +∞ or z 6= +∞ but y 6= −∞ or z 6= −∞ and x 6= +∞ and

x 6= −∞, then x · (y − z) = x · y − x · z.

Let x, y be extended real numbers. Let us assume that x = −∞ or x = +∞

but y = −∞ or y = +∞ but y 6= 0
R
. The functor x

y
yielding an extended real

number is defined by the conditions (Def. 2).

(Def. 2)(i) There exist real numbers a, b such that x = a and y = b and x
y

= a
b
,

or

(ii) x = +∞ and 0
R

< y or x = −∞ and y < 0
R
but x

y
= +∞, or

(iii) x = −∞ and 0
R

< y or x = +∞ and y < 0
R
but x

y
= −∞, or

(iv) y = −∞ or y = +∞ but x
y

= 0
R
.

The following four propositions are true:

(31) Let x, y be extended real numbers. Suppose x = −∞ or x = +∞ but

y = −∞ or y = +∞ but y 6= 0
R
. Then

(i) there exist real numbers a, b such that x = a and y = b and x
y

= a
b
, or

(ii) x = +∞ and 0
R

< y or x = −∞ and y < 0
R
but x

y
= +∞, or

(iii) x = −∞ and 0
R

< y or x = +∞ and y < 0
R
but x

y
= −∞, or

(iv) y = −∞ or y = +∞ but x
y

= 0
R
.

(32) Let x, y be extended real numbers. Suppose y 6= 0
R
. Let a, b be real

numbers. If x = a and y = b, then x
y

= a
b
.

(33) For all extended real numbers x, y such that x 6= −∞ but x 6= +∞ but

y = −∞ or y = +∞ holds x
y

= 0
R
.

(34) For every extended real number x such that x 6= −∞ and x 6= +∞ and

x 6= 0
R
holds x

x
= 1.

Let x be an extended real number. The functor |x| yielding an extended real

number is defined as follows:

(Def. 3) |x| =

{

x, if 0
R
¬ x,

−x, otherwise.
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One can prove the following propositions:

(35) For every extended real number x such that 0
R
¬ x holds |x| = x.

(36) For every extended real number x such that 0
R

< x holds |x| = x.

(37) For every extended real number x such that x < 0
R
holds |x| = −x.

(38) For all real numbers a, b holds R(a · b) = R(a) · R(b).

(39) For all real numbers a, b such that b 6= 0 holds R(a
b
) = R(a)

R(b)
.

(40) For all extended real numbers x, y such that x ¬ y and x < +∞ and

−∞ < y holds 0
R
¬ y − x.

(41) For all extended real numbers x, y such that x < y and x < +∞ and

−∞ < y holds 0
R

< y − x.

(42) If x ¬ y and 0
R
¬ z, then x · z ¬ y · z.

(43) If x ¬ y and z ¬ 0
R
, then y · z ¬ x · z.

(44) If x < y and 0
R

< z and z 6= +∞, then x · z < y · z.

(45) If x < y and z < 0
R
and z 6= −∞, then y · z < x · z.

(46) Suppose x is a real number and y is a real number. Then x < y if and

only if there exist real numbers p, q such that p = x and q = y and p < q.

(47) If x 6= −∞ and y 6= +∞ and x ¬ y and 0
R

< z, then x
z
¬ y

z
.

(48) If x ¬ y and 0
R

< z and z 6= +∞, then x
z
¬ y

z
.

(49) If x 6= −∞ and y 6= +∞ and x ¬ y and z < 0
R
, then y

z
¬ x

z
.

(50) If x ¬ y and z < 0
R
and z 6= −∞, then y

z
¬ x

z
.

(51) If x < y and 0
R

< z and z 6= +∞, then x
z

<
y
z
.

(52) If x < y and z < 0
R
and z 6= −∞, then y

z
< x

z
.
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