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Summary. This article formalizes the proof of Dynkin’s lemma in measure
theory. Dynkin’s lemma is a useful tool in measure theory and probability theory:
it helps frequently to generalize a statement about all elements of a intersection-
stable set system to all elements of the sigma-field generated by that system.

MML Identifier: DYNKIN.

The terminology and notation used in this paper have been introduced in the

following articles: [5], [11], [1], [4], [2], [3], [7], [6], [12], [13], [8], [10], and [9].

1. Preliminaries

For simplicity, we adopt the following rules: O1 denotes a non empty set, f

denotes a sequence of subsets of O1, X, A, B denote subsets of O1, D denotes a

non empty subset of 2O1 , n, m denote natural numbers, F denotes a non empty

set, and x, Y denote sets.

Next we state two propositions:

(1) For every sequence f of subsets of O1 and for every x holds x ∈ rng f iff

there exists n such that f(n) = x.

(2) For every n holds PSegn is finite.

Let us consider n. One can verify that PSegn is finite.

Next we state the proposition

(3) For all sets x, y, z such that x ⊆ y holds x misses z \ y.

Let a, b, c be sets. The functor a, b followed by c is defined as follows:

(Def. 1) a, b followed by c = (N 7−→ c)+·[0 7−→ a, 1 7−→ b].
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Let a, b, c be sets. Observe that a, b followed by c is function-like and relation-

like.

LetX be a non empty set and let a, b, c be elements ofX. Then a, b followed by c

is a function from N into X.

Next we state the proposition

(4) For every non empty set X and for all elements a, b, c of X holds

a, b followed by c is a function from N into X.

LetO1 be a non empty set and let a, b, c be subsets ofO1. Then a, b followed by c

is a sequence of subsets of O1.

One can prove the following propositions:

(5) For all sets a, b, c holds (a, b followed by c)(0) = a and

(a, b followed by c)(1) = b and for every n such that n 6= 0 and n 6= 1

holds (a, b followed by c)(n) = c.

(6) For all subsets a, b of O1 holds
⋃
rng(a, b followed by ∅) = a ∪ b.

Let O1 be a non empty set, let f be a sequence of subsets of O1, and let X

be a subset of O1. The functor seqIntersection(X, f) yields a sequence of subsets

of O1 and is defined by:

(Def. 2) For every n holds (seqIntersection(X, f))(n) = X ∩ f(n).

2. Disjoint-valued Functions and Intersection

Let us consider O1 and let us consider f . Let us observe that f is disjoint

valued if and only if:

(Def. 3) If n < m, then f(n) misses f(m).

We now state the proposition

(7) For every non empty set Y and for every x holds x ⊆
⋂

Y iff for every

element y of Y holds x ⊆ y.

Let x be a set. We introduce x is intersection stable as a synonym of x is

multiplicative.

Let O1 be a non empty set, let f be a sequence of subsets of O1, and let n

be an element of N. The functor disjointify(f, n) yielding an element of 2O1 is

defined by:

(Def. 5)1 disjointify(f, n) = f(n) \
⋃
rng(f↾PSegn).

Let O1 be a non empty set and let g be a sequence of subsets of O1. The

functor disjointify g yielding a sequence of subsets of O1 is defined as follows:

(Def. 6) For every n holds (disjointify g)(n) = disjointify(g, n).

The following propositions are true:

1The definition (Def. 4) has been removed.
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(8) For every n holds (disjointify f)(n) = f(n) \
⋃
rng(f↾PSegn).

(9) For every sequence f of subsets of O1 holds disjointify f is disjoint valued.

(10) For every sequence f of subsets of O1 holds
⋃
rng disjointify f =

⋃
rng f.

(11) For all subsets x, y of O1 such that x misses y holds x, y followed by ∅(O1)

is disjoint valued.

(12) Let f be a sequence of subsets of O1. Suppose f is disjoint valued. Let

X be a subset of O1. Then seqIntersection(X, f) is disjoint valued.

(13) For every sequence f of subsets of O1 and for every subset X of O1 holds

X ∩Union f = Union seqIntersection(X, f).

3. Dynkin Systems: Definition and Closure Properties

Let us consider O1. A subset of 2
O1 is called a Dynkin system of O1 if:

(Def. 7) For every f such that rng f ⊆ it and f is disjoint valued holds Union f ∈

it and for every X such that X ∈ it holds Xc ∈ it and ∅ ∈ it.

Let us consider O1. One can check that every Dynkin system of O1 is non

empty.

The following propositions are true:

(14) 2O1 is a Dynkin system of O1.

(15) If for every Y such that Y ∈ F holds Y is a Dynkin system of O1, then⋂
F is a Dynkin system of O1.

(16) If D is a Dynkin system of O1 and intersection stable, then if A ∈ D

and B ∈ D, then A \B ∈ D.

(17) If D is a Dynkin system of O1 and intersection stable, then if A ∈ D

and B ∈ D, then A ∪B ∈ D.

(18) Suppose D is a Dynkin system of O1 and intersection stable. Let x be a

finite set. If x ⊆ D, then
⋃

x ∈ D.

(19) Suppose D is a Dynkin system of O1 and intersection stable. Let f be a

sequence of subsets of O1. If rng f ⊆ D, then rng disjointify f ⊆ D.

(20) Suppose D is a Dynkin system of O1 and intersection stable. Let f be a

sequence of subsets of O1. If rng f ⊆ D, then
⋃
rng f ∈ D.

(21) For every Dynkin system D of O1 and for all elements x, y of D such

that x misses y holds x ∪ y ∈ D.

(22) For every Dynkin system D of O1 and for all elements x, y of D such

that x ⊆ y holds y \ x ∈ D.
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4. Main Steps for Dynkin’s Lemma

One can prove the following proposition

(23) If D is a Dynkin system of O1 and intersection stable, then D is a σ-field

of subsets of O1.

Let O1 be a non empty set and let E be a subset of 2O1 . The functor

GenDynSysE yielding a Dynkin system of O1 is defined by:

(Def. 8) E ⊆ GenDynSysE and for every Dynkin system D of O1 such that

E ⊆ D holds GenDynSysE ⊆ D.

Let O1 be a non empty set, let G be a set, and let X be a subset of O1. The

functor DynSys(X, G) yields a subset of 2O1 and is defined as follows:

(Def. 9) For every subset A of O1 holds A ∈ DynSys(X,G) iff A ∩X ∈ G.

Let O1 be a non empty set, let G be a Dynkin system of O1, and let X be

an element of G. Then DynSys(X,G) is a Dynkin system of O1.

Next we state four propositions:

(24) Let E be a subset of 2O1 and X, Y be subsets of O1. If X ∈ E and Y ∈

GenDynSysE and E is intersection stable, then X ∩ Y ∈ GenDynSysE.

(25) Let E be a subset of 2O1 andX, Y be subsets of O1. IfX ∈ GenDynSysE

and Y ∈ GenDynSysE and E is intersection stable, then X ∩ Y ∈

GenDynSysE.

(26) For every subset E of 2O1 such that E is intersection stable holds

GenDynSysE is intersection stable.

(27) Let E be a subset of 2O1 . Suppose E is intersection stable. Let D be a

Dynkin system of O1. If E ⊆ D, then σ(E) ⊆ D.
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