Trigonometric Form of Complex Numbers

Robert Milewski
University of Białystok

MML Identifier: COMPTRIG.

The articles [13], [1], [2], [8], [11], [15], [9], [3], [10], [12], [4], [18], [5], [16], [6], $[19],[14],[17]$, and $[7]$ provide the terminology and notation for this paper.

1. Preliminaries

One can prove the following propositions:
(1) Let F be an add-associative right zeroed right complementable left distributive non empty double loop structure and x be an element of the carrier of F. Then $0_{F} \cdot x=0_{F}$.
(2) Let F be an add-associative right zeroed right complementable right distributive non empty double loop structure and x be an element of the carrier of F. Then $x \cdot 0_{F}=0_{F}$.
The scheme Regr without 0 concerns a unary predicate \mathcal{P}, and states that: $\mathcal{P}[1]$
provided the parameters meet the following conditions:

- There exists a non empty natural number k such that $\mathcal{P}[k]$, and
- For every non empty natural number k such that $k \neq 1$ and $\mathcal{P}[k]$ there exists a non empty natural number n such that $n<k$ and $\mathcal{P}[n]$.
One can prove the following propositions:
(3) For every element z of \mathbb{C} holds $\Re(z) \geqslant-|z|$.
(4) For every element z of \mathbb{C} holds $\Im(z) \geqslant-|z|$.
(5) For every element z of the carrier of \mathbb{C}_{F} holds $\Re(z) \geqslant-|z|$.
(6) For every element z of the carrier of \mathbb{C}_{F} holds $\Im(z) \geqslant-|z|$.
(7) For every element z of the carrier of \mathbb{C}_{F} holds $|z|^{\mathbf{2}}=\Re(z)^{2}+\Im(z)^{2}$.
(8) For all real numbers $x_{1}, x_{2}, y_{1}, y_{2}$ such that $x_{1}+x_{2} i_{\mathbb{C}_{F}}=y_{1}+y_{2} i_{\mathbb{C}_{F}}$ holds $x_{1}=y_{1}$ and $x_{2}=y_{2}$.
(9) For every element z of the carrier of \mathbb{C}_{F} holds $z=\Re(z)+\Im(z) i_{\mathbb{C}_{\mathrm{F}}}$.
(10) $0_{\mathbb{C}_{F}}=0+0 i_{\mathbb{C}_{F}}$.
(11) $0_{\mathbb{C}_{F}}=$ the zero of \mathbb{C}_{F}.
(12) For every unital non empty groupoid L and for every element x of the carrier of L holds power ${ }_{L}(x, 1)=x$.
(13) For every unital non empty groupoid L and for every element x of the carrier of L holds $\operatorname{power}_{L}(x, 2)=x \cdot x$.
(14) Let L be an add-associative right zeroed right complementable right distributive unital non empty double loop structure and n be a natural number. If $n>0$, then $\operatorname{power}_{L}\left(0_{L}, n\right)=0_{L}$.
(15) Let L be an associative commutative unital non empty groupoid, x, y be elements of the carrier of L, and n be a natural number. Then $\operatorname{power}_{L}(x \cdot y$, $n)=\operatorname{power}_{L}(x, n) \cdot \operatorname{power}_{L}(y, n)$.
(16) For every real number x such that $x>0$ and for every natural number n holds power $\mathbb{C}_{\mathrm{F}}\left(x+0 i_{\mathbb{C}_{\mathrm{F}}}, n\right)=x^{n}+0 i_{\mathbb{C}_{\mathrm{F}}}$.
(17) For every real number x and for every natural number n such that $x \geqslant 0$ and $n \neq 0$ holds $\sqrt[n]{x} n=x$.

2. Sinus and Cosinus Properties

One can prove the following propositions:
$(20)^{1} \pi+\frac{\pi}{2}=\frac{3}{2} \cdot \pi$ and $\frac{3}{2} \cdot \pi+\frac{\pi}{2}=2 \cdot \pi$ and $\frac{3}{2} \cdot \pi-\pi=\frac{\pi}{2}$.
(21) $0<\frac{\pi}{2}$ and $\frac{\pi}{2}<\pi$ and $0<\pi$ and $-\frac{\pi}{2}<\frac{\pi}{2}$ and $\pi<2 \cdot \pi$ and $\frac{\pi}{2}<\frac{3}{2} \cdot \pi$ and $-\frac{\pi}{2}<0$ and $0<2 \cdot \pi$ and $\pi<\frac{3}{2} \cdot \pi$ and $\frac{3}{2} \cdot \pi<2 \cdot \pi$ and $0<\frac{3}{2} \cdot \pi$.
(22) For all real numbers a, b, c, x such that $x \in] a, c[$ holds $x \in] a, b[$ or $x=b$ or $x \in] b, c[$.
(23) For every real number x such that $x \in] 0, \pi[$ holds $\sin (x)>0$.
(24) For every real number x such that $x \in[0, \pi]$ holds $\sin (x) \geqslant 0$.
(25) For every real number x such that $x \in] \pi, 2 \cdot \pi[$ holds $\sin (x)<0$.
(26) For every real number x such that $x \in[\pi, 2 \cdot \pi]$ holds $\sin (x) \leqslant 0$.
(27) For every real number x such that $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ holds $\cos (x)>0$.
(28) For every real number x such that $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ holds $\cos (x) \geqslant 0$.

[^0](29) For every real number x such that $x \in] \frac{\pi}{2}, \frac{3}{2} \cdot \pi[$ holds $\cos (x)<0$.
(30) For every real number x such that $x \in\left[\frac{\pi}{2}, \frac{3}{2} \cdot \pi\right]$ holds $\cos (x) \leqslant 0$.
(31) For every real number x such that $x \in] \frac{3}{2} \cdot \pi, 2 \cdot \pi[$ holds $\cos (x)>0$.
(32) For every real number x such that $x \in\left[\frac{3}{2} \cdot \pi, 2 \cdot \pi\right]$ holds $\cos (x) \geqslant 0$.
(33) For every real number x such that $0 \leqslant x$ and $x<2 \cdot \pi$ and $\sin x=0$ holds $x=0$ or $x=\pi$.
(34) For every real number x such that $0 \leqslant x$ and $x<2 \cdot \pi$ and $\cos x=0$ holds $x=\frac{\pi}{2}$ or $x=\frac{3}{2} \cdot \pi$.
(35) \sin is increasing on $]-\frac{\pi}{2}, \frac{\pi}{2}[$.
(36) \sin is decreasing on $] \frac{\pi}{2}, \frac{3}{2} \cdot \pi[$.
(37) cos is decreasing on $] 0, \pi[$.
(38) cos is increasing on $] \pi, 2 \cdot \pi[$.
(39) \sin is increasing on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
(40) \sin is decreasing on $\left[\frac{\pi}{2}, \frac{3}{2} \cdot \pi\right]$.
(41) \cos is decreasing on $[0, \pi]$.
(42) cos is increasing on $[\pi, 2 \cdot \pi]$.
(43) \sin is continuous on \mathbb{R} and for all real numbers x, y holds sin is continuous on $[x, y]$ and \sin is continuous on $] x, y[$.
(44) cos is continuous on \mathbb{R} and for all real numbers x, y holds cos is continuous on $[x, y]$ and cos is continuous on $] x, y[$.
(45) For every real number x holds $\sin (x) \in[-1,1]$ and $\cos (x) \in[-1,1]$.
(46) $\mathrm{rng} \sin =[-1,1]$.
(47) rng $\cos =[-1,1]$.
(48) $\operatorname{rng}\left(\sin \upharpoonright\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)=[-1,1]$.
(49) $\quad \operatorname{rng}\left(\sin \upharpoonright\left[\frac{\pi}{2}, \frac{3}{2} \cdot \pi\right]\right)=[-1,1]$.
(50) $\quad \operatorname{rng}(\cos \upharpoonright[0, \pi])=[-1,1]$.
(51) $\operatorname{rng}(\cos \lceil[\pi, 2 \cdot \pi])=[-1,1]$.

3. Argument of Complex Number

Let z be an element of the carrier of \mathbb{C}_{F}. The functor $\operatorname{Arg} z$ yielding a real number is defined as follows:
(Def. 1)(i) $\quad z=|z| \cdot \cos \operatorname{Arg} z+(|z| \cdot \sin \operatorname{Arg} z) i_{\mathbb{C}_{\mathrm{F}}}$ and $0 \leqslant \operatorname{Arg} z$ and $\operatorname{Arg} z<2 \cdot \pi$ if $z \neq 0_{\mathbb{C}_{\mathrm{F}}}$,
(ii) $\operatorname{Arg} z=0$, otherwise.

One can prove the following propositions:
(52) For every element z of the carrier of \mathbb{C}_{F} holds $0 \leqslant \operatorname{Arg} z$ and $\operatorname{Arg} z<2 \cdot \pi$.
(53) For every real number x such that $x \geqslant 0$ holds $\operatorname{Arg} x+0 i_{\mathbb{C}_{\mathrm{F}}}=0$.
(54) For every real number x such that $x<0$ holds $\operatorname{Arg} x+0 i_{\mathbb{C}_{\mathrm{F}}}=\pi$.
(55) For every real number x such that $x>0$ holds $\operatorname{Arg} 0+x i_{\mathbb{C}_{\mathrm{F}}}=\frac{\pi}{2}$.
(56) For every real number x such that $x<0$ holds $\operatorname{Arg} 0+x i_{\mathbb{C}_{F}}=\frac{3}{2} \cdot \pi$.
(57) $\quad \operatorname{Arg} \mathbf{1}_{\mathbb{C}_{F}}=0$.
(58) $\quad \operatorname{Arg} i_{\mathbb{C}_{F}}=\frac{\pi}{2}$.
(59) For every element z of the carrier of \mathbb{C}_{F} holds $\left.\operatorname{Arg} z \in\right] 0, \frac{\pi}{2}[$ iff $\Re(z)>0$ and $\Im(z)>0$.
(60) For every element z of the carrier of \mathbb{C}_{F} holds $\left.\operatorname{Arg} z \in\right] \frac{\pi}{2}, \pi[\operatorname{iff} \Re(z)<0$ and $\Im(z)>0$.
(61) For every element z of the carrier of \mathbb{C}_{F} holds $\left.\operatorname{Arg} z \in\right] \pi, \frac{3}{2} \cdot \pi[$ iff $\Re(z)<0$ and $\Im(z)<0$.
(62) For every element z of the carrier of \mathbb{C}_{F} holds $\left.\operatorname{Arg} z \in\right] \frac{3}{2} \cdot \pi, 2 \cdot \pi[$ iff $\Re(z)>0$ and $\Im(z)<0$.
(63) For every element z of the carrier of \mathbb{C}_{F} such that $\Im(z)>0$ holds $\sin \operatorname{Arg} z>0$.
(64) For every element z of the carrier of \mathbb{C}_{F} such that $\Im(z)<0$ holds $\sin \operatorname{Arg} z<0$.
(65) For every element z of the carrier of \mathbb{C}_{F} such that $\Im(z) \geqslant 0$ holds $\sin \operatorname{Arg} z \geqslant 0$.
(66) For every element z of the carrier of \mathbb{C}_{F} such that $\Im(z) \leqslant 0$ holds $\sin \operatorname{Arg} z \leqslant 0$.
(67) For every element z of the carrier of \mathbb{C}_{F} such that $\Re(z)>0$ holds $\cos \operatorname{Arg} z>0$.
(68) For every element z of the carrier of \mathbb{C}_{F} such that $\Re(z)<0$ holds $\cos \operatorname{Arg} z<0$.
(69) For every element z of the carrier of \mathbb{C}_{F} such that $\Re(z) \geqslant 0$ holds $\cos \operatorname{Arg} z \geqslant 0$.
(70) For every element z of the carrier of \mathbb{C}_{F} such that $\Re(z) \leqslant 0$ and $z \neq 0_{\mathbb{C}_{\mathrm{F}}}$ holds $\cos \operatorname{Arg} z \leqslant 0$.
(71) For every real number x and for every natural number n holds power $_{\mathbb{C}_{\mathrm{F}}}\left(\cos x+\sin x i_{\mathbb{C}_{\mathrm{F}}}, n\right)=\cos n \cdot x+\sin n \cdot x i_{\mathbb{C}_{\mathrm{F}}}$.
(72) Let z be an element of the carrier of \mathbb{C}_{F} and n be a natural number. If $z \neq$ $0_{\mathbb{C}_{\mathrm{F}}}$ or $n \neq 0$, then power $\mathbb{C}_{\mathrm{F}}(z, n)=|z|^{n} \cdot \cos n \cdot \operatorname{Arg} z+\left(|z|^{n} \cdot \sin n \cdot \operatorname{Arg} z\right) i_{\mathbb{C}_{\mathrm{F}}}$.
(73) For every real number x and for all natural numbers n, k such that $n \neq 0$ holds power $\mathbb{C}_{\mathrm{F}}\left(\cos \frac{x+2 \cdot \pi \cdot k}{n}+\sin \frac{x+2 \cdot \pi \cdot k}{n} i_{\mathbb{C}_{\mathrm{F}}}, n\right)=\cos x+\sin x i_{\mathbb{C}_{\mathrm{F}}}$.
(74) Let z be an element of the carrier of \mathbb{C}_{F} and n, k be natural numbers. If $n \neq 0$, then $z=\operatorname{power}_{\mathbb{C}_{\mathrm{F}}}\left(\sqrt[n]{|z|} \cdot \cos \frac{\operatorname{Arg} z+2 \cdot \pi \cdot k}{n}+\left(\sqrt[n]{|z|} \cdot \sin \frac{\operatorname{Arg} z+2 \cdot \pi \cdot k}{n}\right) i_{\mathbb{C}_{\mathrm{F}}}\right.$, $n)$.
Let x be an element of the carrier of \mathbb{C}_{F} and let n be a non empty natural number. An element of \mathbb{C}_{F} is called a root of n, x if:
(Def. 2) power $_{\mathbb{C}_{\mathrm{F}}}(\mathrm{it}, n)=x$.
We now state four propositions:
(75) Let x be an element of the carrier of $\mathbb{C}_{\mathrm{F}}, n$ be a non empty natural number, and k be a natural number. Then $\sqrt[n]{|x|} \cdot \cos \frac{\operatorname{Arg} x+2 \cdot \pi \cdot k}{n}+(\sqrt[n]{|x|}$. $\left.\sin \frac{\operatorname{Arg} x+2 \cdot \pi \cdot k}{n}\right) i_{\mathbb{C}_{F}}$ is a root of n, x.
(76) For every element x of the carrier of \mathbb{C}_{F} and for every root v of $1, x$ holds $v=x$.
(77) For every non empty natural number n and for every root v of $n, 0_{\mathbb{C}_{F}}$ holds $v=0_{\mathbb{C}_{\mathrm{F}}}$.
(78) Let n be a non empty natural number, x be an element of the carrier of \mathbb{C}_{F}, and v be a root of n, x. If $v=0_{\mathbb{C}_{\mathrm{F}}}$, then $x=0_{\mathbb{C}_{\mathrm{F}}}$.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[8] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2):265-269, 2001.
[9] Anna Justyna Milewska. The Hahn Banach theorem in the vector space over the field of complex numbers. Formalized Mathematics, 9(2):363-371, 2001.
[10] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[11] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[13] Wojciech Skaba and Michał Muzalewski. From double loops to fields. Formalized Mathematics, 2(1):185-191, 1991.
[14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[15] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[16] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[19] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received July 21, 2000

[^0]: ${ }^{1}$ The notation of π has been changed, previously 'Pai'. The propositions (18) and (19) have been removed.

