Trigonometric Form of Complex Numbers

Robert Milewski University of Białystok

 $\label{eq:MML} {\rm MML} \ {\rm Identifier:} \ {\tt COMPTRIG}.$

The articles [13], [1], [2], [8], [11], [15], [9], [3], [10], [12], [4], [18], [5], [16], [6], [19], [14], [17], and [7] provide the terminology and notation for this paper.

1. Preliminaries

One can prove the following propositions:

- (1) Let F be an add-associative right zeroed right complementable left distributive non empty double loop structure and x be an element of the carrier of F. Then $0_F \cdot x = 0_F$.
- (2) Let F be an add-associative right zeroed right complementable right distributive non empty double loop structure and x be an element of the carrier of F. Then $x \cdot 0_F = 0_F$.
- The scheme Regr without 0 concerns a unary predicate \mathcal{P} , and states that: $\mathcal{P}[1]$

provided the parameters meet the following conditions:

- There exists a non empty natural number k such that $\mathcal{P}[k]$, and
- For every non empty natural number k such that $k \neq 1$ and $\mathcal{P}[k]$ there exists a non empty natural number n such that n < k and $\mathcal{P}[n]$.

One can prove the following propositions:

- (3) For every element z of \mathbb{C} holds $\Re(z) \ge -|z|$.
- (4) For every element z of \mathbb{C} holds $\Im(z) \ge -|z|$.
- (5) For every element z of the carrier of \mathbb{C}_{F} holds $\Re(z) \ge -|z|$.
- (6) For every element z of the carrier of \mathbb{C}_{F} holds $\Im(z) \ge -|z|$.

C 2001 University of Białystok ISSN 1426-2630

ROBERT MILEWSKI

- (7) For every element z of the carrier of \mathbb{C}_{F} holds $|z|^2 = \Re(z)^2 + \Im(z)^2$.
- (8) For all real numbers x_1 , x_2 , y_1 , y_2 such that $x_1 + x_2 i_{\mathbb{C}_F} = y_1 + y_2 i_{\mathbb{C}_F}$ holds $x_1 = y_1$ and $x_2 = y_2$.
- (9) For every element z of the carrier of \mathbb{C}_{F} holds $z = \Re(z) + \Im(z)i_{\mathbb{C}_{\mathrm{F}}}$.
- (10) $0_{\mathbb{C}_{\mathrm{F}}} = 0 + 0i_{\mathbb{C}_{\mathrm{F}}}.$
- (11) $0_{\mathbb{C}_{\mathrm{F}}} = \text{the zero of } \mathbb{C}_{\mathrm{F}}.$
- (12) For every unital non empty groupoid L and for every element x of the carrier of L holds $power_L(x, 1) = x$.
- (13) For every unital non empty groupoid L and for every element x of the carrier of L holds $power_L(x, 2) = x \cdot x$.
- (14) Let L be an add-associative right zeroed right complementable right distributive unital non empty double loop structure and n be a natural number. If n > 0, then power_L $(0_L, n) = 0_L$.
- (15) Let L be an associative commutative unital non empty groupoid, x, y be elements of the carrier of L, and n be a natural number. Then $power_L(x \cdot y, n) = power_L(x, n) \cdot power_L(y, n)$.
- (16) For every real number x such that x > 0 and for every natural number n holds power_{C_F} $(x + 0i_{C_F}, n) = x^n + 0i_{C_F}$.
- (17) For every real number x and for every natural number n such that $x \ge 0$ and $n \ne 0$ holds $\sqrt[n]{x^n} = x$.

2. Sinus and Cosinus Properties

One can prove the following propositions:

- $(20)^1 \quad \pi + \frac{\pi}{2} = \frac{3}{2} \cdot \pi \text{ and } \frac{3}{2} \cdot \pi + \frac{\pi}{2} = 2 \cdot \pi \text{ and } \frac{3}{2} \cdot \pi \pi = \frac{\pi}{2}.$
- (21) $0 < \frac{\pi}{2}$ and $\frac{\pi}{2} < \pi$ and $0 < \pi$ and $-\frac{\pi}{2} < \frac{\pi}{2}$ and $\pi < 2 \cdot \pi$ and $\frac{\pi}{2} < \frac{3}{2} \cdot \pi$ and $-\frac{\pi}{2} < 0$ and $0 < 2 \cdot \pi$ and $\pi < \frac{3}{2} \cdot \pi$ and $\frac{3}{2} \cdot \pi < 2 \cdot \pi$ and $0 < \frac{3}{2} \cdot \pi$.
- (22) For all real numbers a, b, c, x such that $x \in]a, c[$ holds $x \in]a, b[$ or x = b or $x \in]b, c[$.
- (23) For every real number x such that $x \in [0, \pi[$ holds $\sin(x) > 0$.
- (24) For every real number x such that $x \in [0, \pi]$ holds $\sin(x) \ge 0$.
- (25) For every real number x such that $x \in [\pi, 2 \cdot \pi]$ holds $\sin(x) < 0$.
- (26) For every real number x such that $x \in [\pi, 2 \cdot \pi]$ holds $\sin(x) \leq 0$.
- (27) For every real number x such that $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ holds $\cos(x) > 0$.
- (28) For every real number x such that $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ holds $\cos(x) \ge 0$.

¹The notation of π has been changed, previously 'Pai'. The propositions (18) and (19) have been removed.

- (29) For every real number x such that $x \in \left]\frac{\pi}{2}, \frac{3}{2} \cdot \pi\right[$ holds $\cos(x) < 0$.
- (30) For every real number x such that $x \in [\frac{\pi}{2}, \frac{3}{2} \cdot \pi]$ holds $\cos(x) \leq 0$.
- (31) For every real number x such that $x \in \left]\frac{3}{2} \cdot \pi, 2 \cdot \pi\right[$ holds $\cos(x) > 0$.
- (32) For every real number x such that $x \in [\frac{3}{2} \cdot \pi, 2 \cdot \pi]$ holds $\cos(x) \ge 0$.
- (33) For every real number x such that $0 \le x$ and $x < 2 \cdot \pi$ and $\sin x = 0$ holds x = 0 or $x = \pi$.
- (34) For every real number x such that $0 \le x$ and $x < 2 \cdot \pi$ and $\cos x = 0$ holds $x = \frac{\pi}{2}$ or $x = \frac{3}{2} \cdot \pi$.
- (35) sin is increasing on $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$.
- (36) sin is decreasing on $]\frac{\pi}{2}, \frac{3}{2} \cdot \pi[$.
- (37) cos is decreasing on $]0, \pi[$.
- (38) cos is increasing on $]\pi, 2 \cdot \pi[.$
- (39) sin is increasing on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- (40) sin is decreasing on $\left[\frac{\pi}{2}, \frac{3}{2} \cdot \pi\right]$.
- (41) cos is decreasing on $[0, \pi]$.
- (42) cos is increasing on $[\pi, 2 \cdot \pi]$.
- (43) sin is continuous on \mathbb{R} and for all real numbers x, y holds sin is continuous on [x, y] and sin is continuous on]x, y[.
- (44) cos is continuous on \mathbb{R} and for all real numbers x, y holds cos is continuous on [x, y] and cos is continuous on]x, y[.
- (45) For every real number x holds $\sin(x) \in [-1, 1]$ and $\cos(x) \in [-1, 1]$.
- (46) $\operatorname{rngsin} = [-1, 1].$
- (47) $\operatorname{rng} \cos = [-1, 1].$
- (48) $\operatorname{rng}(\sin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]) = [-1, 1].$
- (49) $\operatorname{rng}(\sin [\frac{\pi}{2}, \frac{3}{2} \cdot \pi]) = [-1, 1].$
- (50) $\operatorname{rng}(\cos [0, \pi]) = [-1, 1].$
- (51) $\operatorname{rng}(\cos [\pi, 2 \cdot \pi]) = [-1, 1].$

3. Argument of Complex Number

Let z be an element of the carrier of \mathbb{C}_{F} . The functor $\operatorname{Arg} z$ yielding a real number is defined as follows:

- (Def. 1)(i) $z = |z| \cdot \cos \operatorname{Arg} z + (|z| \cdot \sin \operatorname{Arg} z) i_{\mathbb{C}_{\mathrm{F}}}$ and $0 \leq \operatorname{Arg} z$ and $\operatorname{Arg} z < 2 \cdot \pi$ if $z \neq 0_{\mathbb{C}_{\mathrm{F}}}$,
 - (ii) $\operatorname{Arg} z = 0$, otherwise.

ROBERT MILEWSKI

One can prove the following propositions:

- (52) For every element z of the carrier of \mathbb{C}_{F} holds $0 \leq \operatorname{Arg} z$ and $\operatorname{Arg} z < 2 \cdot \pi$.
- (53) For every real number x such that $x \ge 0$ holds $\operatorname{Arg} x + 0i_{\mathbb{C}_{\mathrm{F}}} = 0$.
- (54) For every real number x such that x < 0 holds $\operatorname{Arg} x + 0i_{\mathbb{C}_{\mathrm{F}}} = \pi$.
- (55) For every real number x such that x > 0 holds $\operatorname{Arg} 0 + xi_{\mathbb{C}_{\mathrm{F}}} = \frac{\pi}{2}$.
- (56) For every real number x such that x < 0 holds $\operatorname{Arg} 0 + xi_{\mathbb{C}_{\mathrm{F}}} = \frac{3}{2} \cdot \pi$.
- (57) Arg $\mathbf{1}_{\mathbb{C}_{\mathrm{F}}} = 0.$
- (58) Arg $i_{\mathbb{C}_{\mathrm{F}}} = \frac{\pi}{2}$.
- (59) For every element z of the carrier of \mathbb{C}_{F} holds $\operatorname{Arg} z \in]0, \frac{\pi}{2}[$ iff $\Re(z) > 0$ and $\Im(z) > 0$.
- (60) For every element z of the carrier of \mathbb{C}_{F} holds $\operatorname{Arg} z \in]\frac{\pi}{2}, \pi[$ iff $\Re(z) < 0$ and $\Im(z) > 0$.
- (61) For every element z of the carrier of \mathbb{C}_{F} holds $\operatorname{Arg} z \in]\pi, \frac{3}{2} \cdot \pi[\operatorname{iff} \Re(z) < 0$ and $\Im(z) < 0$.
- (62) For every element z of the carrier of \mathbb{C}_{F} holds $\operatorname{Arg} z \in]\frac{3}{2} \cdot \pi, 2 \cdot \pi[$ iff $\Re(z) > 0$ and $\Im(z) < 0$.
- (63) For every element z of the carrier of \mathbb{C}_{F} such that $\Im(z) > 0$ holds $\sin \operatorname{Arg} z > 0$.
- (64) For every element z of the carrier of \mathbb{C}_{F} such that $\Im(z) < 0$ holds $\sin \operatorname{Arg} z < 0$.
- (65) For every element z of the carrier of \mathbb{C}_{F} such that $\Im(z) \ge 0$ holds $\sin \operatorname{Arg} z \ge 0$.
- (66) For every element z of the carrier of \mathbb{C}_{F} such that $\Im(z) \leq 0$ holds $\sin \operatorname{Arg} z \leq 0$.
- (67) For every element z of the carrier of \mathbb{C}_{F} such that $\Re(z) > 0$ holds $\cos \operatorname{Arg} z > 0$.
- (68) For every element z of the carrier of \mathbb{C}_{F} such that $\Re(z) < 0$ holds $\cos \operatorname{Arg} z < 0$.
- (69) For every element z of the carrier of \mathbb{C}_{F} such that $\Re(z) \ge 0$ holds $\cos \operatorname{Arg} z \ge 0$.
- (70) For every element z of the carrier of \mathbb{C}_{F} such that $\Re(z) \leq 0$ and $z \neq 0_{\mathbb{C}_{\mathrm{F}}}$ holds cos Arg $z \leq 0$.
- (71) For every real number x and for every natural number n holds power_{C_F}(cos x + sin xi_{C_F}, n) = cos n · x + sin n · xi_{C_F}.
- (72) Let z be an element of the carrier of \mathbb{C}_{F} and n be a natural number. If $z \neq 0_{\mathbb{C}_{\mathrm{F}}}$ or $n \neq 0$, then power_{$\mathbb{C}_{\mathrm{F}}}(z, n) = |z|^n \cdot \cos n \cdot \operatorname{Arg} z + (|z|^n \cdot \sin n \cdot \operatorname{Arg} z) i_{\mathbb{C}_{\mathrm{F}}}$.</sub>
- (73) For every real number x and for all natural numbers n, k such that $n \neq 0$ holds power_{C_F} (cos $\frac{x+2\cdot\pi\cdot k}{n} + \sin \frac{x+2\cdot\pi\cdot k}{n}i_{C_F}$, n) = cos x + sin xi_{C_F} .

458

(74) Let z be an element of the carrier of \mathbb{C}_{F} and n, k be natural numbers. If $n \neq 0$, then $z = \mathrm{power}_{\mathbb{C}_{\mathrm{F}}}(\sqrt[n]{|z|} \cdot \cos \frac{\mathrm{Arg}\,z + 2 \cdot \pi \cdot k}{n} + (\sqrt[n]{|z|} \cdot \sin \frac{\mathrm{Arg}\,z + 2 \cdot \pi \cdot k}{n})i_{\mathbb{C}_{\mathrm{F}}},$ n).

Let x be an element of the carrier of \mathbb{C}_{F} and let n be a non empty natural number. An element of \mathbb{C}_{F} is called a root of n, x if:

(Def. 2) power_{\mathbb{C}_{F}}(it, n) = x.

We now state four propositions:

- (75) Let x be an element of the carrier of \mathbb{C}_{F} , n be a non empty natural number, and k be a natural number. Then $\sqrt[n]{|x|} \cdot \cos \frac{\operatorname{Arg} x + 2 \cdot \pi \cdot k}{n} + (\sqrt[n]{|x|} \cdot \sin \frac{\operatorname{Arg} x + 2 \cdot \pi \cdot k}{n}) i_{\mathbb{C}_{\mathrm{F}}}$ is a root of n, x.
- (76) For every element x of the carrier of \mathbb{C}_{F} and for every root v of 1, x holds v = x.
- (77) For every non empty natural number n and for every root v of n, $0_{\mathbb{C}_{\mathrm{F}}}$ holds $v = 0_{\mathbb{C}_{\mathrm{F}}}$.
- (78) Let *n* be a non empty natural number, *x* be an element of the carrier of \mathbb{C}_{F} , and *v* be a root of *n*, *x*. If $v = 0_{\mathbb{C}_{\mathrm{F}}}$, then $x = 0_{\mathbb{C}_{\mathrm{F}}}$.

References

- [1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
- [3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [5] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781–786, 1990.
- [6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [8] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2):265–269, 2001.
- [9] Anna Justyna Milewska. The Hahn Banach theorem in the vector space over the field of complex numbers. Formalized Mathematics, 9(2):363–371, 2001.
- [10] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
- [11] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787–791, 1990.
- [12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [13] Wojciech Skaba and Michał Muzalewski. From double loops to fields. Formalized Mathematics, 2(1):185–191, 1991.
- [14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [15] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [16] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

ROBERT MILEWSKI

- [18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [19] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received July 21, 2000

460