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The papers [16], [9], [11], [12], [15], [19], [2], [3], [5], [6], [4], [1], [20], [21], [17],

[8], [7], [13], [18], [14], and [10] provide the terminology and notation for this

paper.

For simplicity, we adopt the following convention: R denotes a good ring, r

denotes an element of the carrier of R, a, b denote Data-Locations of R, i1, i2, i3
denote instruction-locations of SCM(R), I denotes an instruction of SCM(R),

s1, s2 denote states of SCM(R), T denotes an instruction type of SCM(R),

and k denotes a natural number.

Let us note that Z is infinite.

One can verify that INT.Ring is infinite and good.

Let us mention that there exists a 1-sorted structure which is strict and

infinite.

Let us mention that there exists a ring which is strict, infinite, and good.

We now state the proposition

(1) ObjectKind(a) = the carrier of R.

Let R be a good ring, let l1, l2 be Data-Locations of R, and let a, b be

elements of R. Then [l1 7−→ a, l2 7−→ b] is a finite partial state of SCM(R).

We now state a number of propositions:

(2) a /∈ the instruction locations of SCM(R).

(3) a 6= ICSCM(R).

(4) Data-LocSCM 6= the instruction locations of SCM(R).

(5) For every object o of SCM(R) holds o = ICSCM(R) or o ∈ the instruc-

tion locations of SCM(R) or o is a Data-Location of R.

(6) If i2 6= i3, then Next(i2) 6= Next(i3).
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(7) If s1 and s2 are equal outside the instruction locations of SCM(R), then

s1(a) = s2(a).

(8) InsCode(haltSCM(R)) = 0.

(9) InsCode(a:=b) = 1.

(10) InsCode(AddTo(a, b)) = 2.

(11) InsCode(SubFrom(a, b)) = 3.

(12) InsCode(MultBy(a, b)) = 4.

(13) InsCode(a:=r) = 5.

(14) InsCode(goto i2) = 6.

(15) InsCode(if a = 0 goto i2) = 7.

(16) If InsCode(I) = 0, then I = haltSCM(R).

(17) If InsCode(I) = 1, then there exist a, b such that I = a:=b.

(18) If InsCode(I) = 2, then there exist a, b such that I = AddTo(a, b).

(19) If InsCode(I) = 3, then there exist a, b such that I = SubFrom(a, b).

(20) If InsCode(I) = 4, then there exist a, b such that I = MultBy(a, b).

(21) If InsCode(I) = 5, then there exist a, r such that I = a:=r.

(22) If InsCode(I) = 6, then there exists i3 such that I = goto i3.

(23) If InsCode(I) = 7, then there exist a, i2 such that I = if a = 0 goto i2.

(24) AddressPart(haltSCM(R)) = ε.

(25) AddressPart(a:=b) = 〈a, b〉.

(26) AddressPart(AddTo(a, b)) = 〈a, b〉.

(27) AddressPart(SubFrom(a, b)) = 〈a, b〉.

(28) AddressPart(MultBy(a, b)) = 〈a, b〉.

(29) AddressPart(a:=r) = 〈a, r〉.

(30) AddressPart(goto i2) = 〈i2〉.

(31) AddressPart(if a = 0 goto i2) = 〈i2, a〉.

(32) If T = 0, then AddressPartsT = {0}.

Let us consider R, T . Observe that AddressPartsT is non empty.

We now state a number of propositions:

(33) If T = 1, then dom
∏
AddressPartsT = {1, 2}.

(34) If T = 2, then dom
∏
AddressPartsT = {1, 2}.

(35) If T = 3, then dom
∏
AddressPartsT = {1, 2}.

(36) If T = 4, then dom
∏
AddressPartsT = {1, 2}.

(37) If T = 5, then dom
∏
AddressPartsT = {1, 2}.

(38) If T = 6, then dom
∏
AddressPartsT = {1}.

(39) If T = 7, then dom
∏
AddressPartsT = {1, 2}.

(40)
∏
AddressParts InsCode(a:=b)(1) = Data-LocSCM.
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(41)
∏
AddressParts InsCode(a:=b)(2) = Data-LocSCM.

(42)
∏
AddressParts InsCode(AddTo(a,b))(1) = Data-LocSCM.

(43)
∏
AddressParts InsCode(AddTo(a,b))(2) = Data-LocSCM.

(44)
∏
AddressParts InsCode(SubFrom(a,b))(1) = Data-LocSCM.

(45)
∏
AddressParts InsCode(SubFrom(a,b))(2) = Data-LocSCM.

(46)
∏
AddressParts InsCode(MultBy(a,b))(1) = Data-LocSCM.

(47)
∏
AddressParts InsCode(MultBy(a,b))(2) = Data-LocSCM.

(48)
∏
AddressParts InsCode(a:=r)(1) = Data-LocSCM.

(49)
∏
AddressParts InsCode(a:=r)(2) = the carrier of R.

(50)
∏
AddressParts InsCode(goto i2)(1) = the instruction locations of SCM(R).

(51)
∏
AddressParts InsCode(if a=0 goto i2)(1) = the instruction locations of

SCM(R).

(52)
∏
AddressParts InsCode(if a=0 goto i2)(2) = Data-LocSCM.

(53) NIC(haltSCM(R), i1) = {i1}.

Let us consider R. One can check that JUMP(haltSCM(R)) is empty.

Next we state the proposition

(54) NIC(a:=b, i1) = {Next(i1)}.

Let us consider R, a, b. Observe that JUMP(a:=b) is empty.

We now state the proposition

(55) NIC(AddTo(a, b), i1) = {Next(i1)}.

Let us consider R, a, b. One can check that JUMP(AddTo(a, b)) is empty.

One can prove the following proposition

(56) NIC(SubFrom(a, b), i1) = {Next(i1)}.

Let us consider R, a, b. Note that JUMP(SubFrom(a, b)) is empty.

Next we state the proposition

(57) NIC(MultBy(a, b), i1) = {Next(i1)}.

Let us consider R, a, b. One can verify that JUMP(MultBy(a, b)) is empty.

One can prove the following proposition

(58) NIC(a:=r, i1) = {Next(i1)}.

Let us consider R, a, r. Note that JUMP(a:=r) is empty.

The following propositions are true:

(59) NIC(goto i2, i1) = {i2}.

(60) JUMP(goto i2) = {i2}.

Let us consider R, i2. Note that JUMP(goto i2) is non empty and trivial.

We now state two propositions:

(61) i2 ∈ NIC(if a = 0 goto i2, i1) and NIC(if a = 0 goto i2, i1) ⊆

{i2,Next(i1)}.

(62) JUMP(if a = 0 goto i2) = {i2}.
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Let us consider R, a, i2. Observe that JUMP(if a = 0 goto i2) is non empty

and trivial.

One can prove the following two propositions:

(63) SUCC(i1) = {i1,Next(i1)}.

(64) Let f be a function from N into the instruction locations of SCM(R).

Suppose that for every natural number k holds f(k) = ik. Then

(i) f is bijective, and

(ii) for every natural number k holds f(k +1) ∈ SUCC(f(k)) and for every

natural number j such that f(j) ∈ SUCC(f(k)) holds k ¬ j.

Let us consider R. Note that SCM(R) is standard.

Next we state three propositions:

(65) ilSCM(R)(k) = ik.

(66) Next(ilSCM(R)(k)) = ilSCM(R)(k + 1).

(67) Next(i1) = NextLoc i1.

Let R be a good ring and let k be a natural number. The functor dlR(k)

yields a Data-Location of R and is defined as follows:

(Def. 1) dlR(k) = dk.

Let us consider R. Observe that InsCode(haltSCM(R)) is jump-only.

Let us consider R. Note that haltSCM(R) is jump-only.

Let us consider R, i2. Note that InsCode(goto i2) is jump-only.

Let us consider R, i2. One can check that goto i2 is jump-only.

Let us consider R, a, i2. Observe that InsCode(if a = 0 goto i2) is jump-

only.

Let us consider R, a, i2. Note that if a = 0 goto i2 is jump-only.

In the sequel S denotes a non trivial good ring, p, q denote Data-Locations

of S, and w denotes an element of the carrier of S.

Let us consider S, p, q. One can check that InsCode(p:=q) is non jump-only.

Let us consider S, p, q. One can check that p:=q is non jump-only.

Let us consider S, p, q. Observe that InsCode(AddTo(p, q)) is non jump-only.

Let us consider S, p, q. Note that AddTo(p, q) is non jump-only.

Let us consider S, p, q. Note that InsCode(SubFrom(p, q)) is non jump-only.

Let us consider S, p, q. Note that SubFrom(p, q) is non jump-only.

Let us consider S, p, q. Observe that InsCode(MultBy(p, q)) is non jump-

only.

Let us consider S, p, q. One can verify that MultBy(p, q) is non jump-only.

Let us consider S, p, w. Note that InsCode(p:=w) is non jump-only.

Let us consider S, p, w. Note that p:=w is non jump-only.

Let us consider R, a, b. Observe that a:=b is sequential.

Let us consider R, a, b. Observe that AddTo(a, b) is sequential.

Let us consider R, a, b. Note that SubFrom(a, b) is sequential.
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Let us consider R, a, b. One can verify that MultBy(a, b) is sequential.

Let us consider R, a, r. Note that a:=r is sequential.

Let us consider R, i2. One can check that goto i2 is non sequential.

Let us consider R, a, i2. Observe that if a = 0 goto i2 is non sequential.

Let us consider R, i2. Note that goto i2 is non instruction location free.

Let us consider R, a, i2. Note that if a = 0 goto i2 is non instruction loca-

tion free.

Let us consider R. One can check that SCM(R) is homogeneous and explicit-

jump-instruction and has ins-loc-in-jump.

Let us consider R. Observe that SCM(R) is regular.

Next we state two propositions:

(68) IncAddr(goto i2, k) = goto ilSCM(R)(locnum(i2) + k).

(69) IncAddr(if a = 0 goto i2, k) = if a = 0 goto ilSCM(R)(locnum(i2)+k).

Let us consider R. One can check that SCM(R) is IC-good and Exec-

preserving.
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