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The notation and terminology used in this paper are introduced in the following

papers: [14], [5], [25], [3], [20], [7], [8], [6], [18], [22], [1], [19], [23], [2], [17], [15],

[4], [9], [26], [21], [10], [24], [16], [12], [11], and [13].

1. Preliminaries

In this article we present several logical schemes. The scheme FinRecExD2

deals with a non empty set A, an element B of A, a natural number C, and a

ternary predicate P, and states that:

There exists a finite sequence p of elements of A such that len p =

C but p1 = B or C = 0 but for every natural number n such that

1 ¬ n and n < C holds P[n, pn, pn+1]

provided the parameters meet the following conditions:

• Let n be a natural number. Suppose 1 ¬ n and n < C. Let x be

an element of A. Then there exists an element y of A such that

P[n, x, y], and

• Let n be a natural number. Suppose 1 ¬ n and n < C. Let x, y1,

y2 be elements of A. If P[n, x, y1] and P[n, x, y2], then y1 = y2.

The scheme FinRecUnD2 deals with a non empty set A, an element B of

A, a natural number C, finite sequences D, E of elements of A, and a ternary

predicate P, and states that:

D = E

provided the parameters meet the following requirements:

• Let n be a natural number. Suppose 1 ¬ n and n < C. Let x, y1,

y2 be elements of A. If P[n, x, y1] and P[n, x, y2], then y1 = y2,
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• lenD = C but D1 = B or C = 0 but for every natural number n

such that 1 ¬ n and n < C holds P[n,Dn,Dn+1], and

• len E = C but E1 = B or C = 0 but for every natural number n

such that 1 ¬ n and n < C holds P[n, En, En+1].

The scheme FinInd deals with natural numbers A, B and a unary predicate

P, and states that:

For every natural number i such that A ¬ i and i ¬ B holds P[i]

provided the following conditions are satisfied:

• P[A], and

• For every natural number j such that A ¬ j and j < B holds if

P[j], then P[j + 1].

The scheme FinInd2 deals with natural numbers A, B and a unary predicate

P, and states that:

For every natural number i such that A ¬ i and i ¬ B holds P[i]

provided the parameters satisfy the following conditions:

• P[A], and

• Let j be a natural number. Suppose A ¬ j and j < B. Suppose

that for every natural number j′ such that A ¬ j′ and j′ ¬ j

holds P[j′]. Then P[j + 1].

The scheme IndFinSeq deals with a set A, a finite sequence B of elements of

A, and a unary predicate P, and states that:

For every natural number i such that 1 ¬ i and i ¬ lenB holds

P[B(i)]

provided the following conditions are satisfied:

• P[B(1)], and

• For every natural number i such that 1 ¬ i and i < lenB holds if

P[B(i)], then P[B(i + 1)].

Let us mention that every non empty double loop structure which is com-

mutative and right distributive is also distributive.

The following two propositions are true:

(1) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure and x, y be elements of the carrier

of L. Then (−x) · y = −x · y.

(2) Let L be a unital associative non trivial non empty double loop structure,

a be an element of the carrier of L, and n, m be natural numbers. Then

powerL(a, n + m) = powerL(a, n) · powerL(a, m).

Let us note that every non empty multiplicative loop structure which is well

unital is also unital.

One can prove the following proposition

(3) For every well unital non empty double loop structure L holds 1L = 1L.
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Let us note that there exists a non empty double loop structure which is

Abelian, right zeroed, add-associative, right complementable, unital, well unital,

distributive, commutative, associative, and non trivial.

2. About Finite Sequences and the Functor SgmX

Next we state a number of propositions:

(4) Let D be a set, p be a finite sequence of elements of D, and k be a

natural number. Suppose k ∈ dom p. Let i be a natural number. If 1 ¬ i

and i ¬ k, then i ∈ dom p.

(5) Let L be a left zeroed right zeroed non empty loop structure, p be a

finite sequence of elements of the carrier of L, and i be a natural number.

Suppose i ∈ dom p and for every natural number i′ such that i′ ∈ dom p

and i′ 6= i holds pi′ = 0L. Then
∑

p = pi.

(6) Let L be an add-associative right zeroed right complementable distribu-

tive unital non empty double loop structure and p be a finite sequence of

elements of the carrier of L. If there exists a natural number i such that

i ∈ dom p and pi = 0L, then
∏

p = 0L.

(7) Let L be an Abelian add-associative non empty loop structure, a be an

element of the carrier of L, and p, q be finite sequences of elements of the

carrier of L. Suppose that

(i) len p = len q, and

(ii) there exists a natural number i such that i ∈ dom p and qi = a+pi and

for every natural number i′ such that i′ ∈ dom p and i′ 6= i holds qi′ = pi′ .

Then
∑

q = a +
∑

p.

(8) Let L be a commutative associative non empty double loop structure, a

be an element of the carrier of L, and p, q be finite sequences of elements

of the carrier of L. Suppose that

(i) len p = len q, and

(ii) there exists a natural number i such that i ∈ dom p and qi = a · pi and

for every natural number i′ such that i′ ∈ dom p and i′ 6= i holds qi′ = pi′ .

Then
∏

q = a ·
∏

p.

(9) Let X be a set, A be an empty subset of X, and R be an order in X. If

R linearly orders A, then SgmX(R,A) = ε.

(10) LetX be a set, A be a finite subset ofX, andR be an order inX. Suppose

R linearly orders A. Let i, j be natural numbers. If i ∈ domSgmX(R, A)

and j ∈ domSgmX(R, A), then if (SgmX(R,A))i = (SgmX(R, A))j , then

i = j.

(11) Let X be a set, A be a finite subset of X, and a be an element of X.

Suppose a /∈ A. Let B be a finite subset of X. Suppose B = {a}∪A. Let R
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be an order in X. Suppose R linearly orders B. Let k be a natural number.

Suppose k ∈ domSgmX(R, B) and (SgmX(R, B))k = a. Let i be a natural

number. If 1 ¬ i and i ¬ k − 1, then (SgmX(R,B))i = (SgmX(R,A))i.

(12) Let X be a set, A be a finite subset of X, and a be an element of

X. Suppose a /∈ A. Let B be a finite subset of X. Suppose B = {a} ∪

A. Let R be an order in X. Suppose R linearly orders B. Let k be a

natural number. Suppose k ∈ domSgmX(R, B) and (SgmX(R, B))k =

a. Let i be a natural number. If k ¬ i and i ¬ len SgmX(R,A), then

(SgmX(R, B))i+1 = (SgmX(R, A))i.

(13) Let X be a non empty set, A be a finite subset of X, and a be an element

of X. Suppose a /∈ A. Let B be a finite subset of X. Suppose B = {a}∪A.

Let R be an order in X. Suppose R linearly orders B. Let k be a natural

number. If k + 1 ∈ domSgmX(R, B) and (SgmX(R, B))k+1 = a, then

SgmX(R, B) = Ins(SgmX(R,A), k, a).

Let n be an ordinal number. Then ⊆n is an order in n.

3. Evaluation of Bags

Next we state the proposition

(14) For every set X and for every bag b of X such that support b = ∅ holds

b = EmptyBagX.

Let X be a set and let b be a bag of X. We say that b is empty if and only

if:

(Def. 1) b = EmptyBagX.

Let X be a non empty set. Observe that there exists a bag of X which is

non empty.

Let X be a set and let b be a bag of X. Then support b is a finite subset of

X.

Next we state the proposition

(15) For every ordinal number n and for every bag b of n holds ⊆n linearly

orders support b.

Let X be a set, let x be a finite sequence of elements of X, and let b be a

bag of X. Then b · x is a partial function from N to N.

Let n be an ordinal number, let b be a bag of n, let L be a non trivial unital

non empty double loop structure, and let x be a function from n into L. The

functor eval(b, x) yields an element of L and is defined by the condition (Def. 2).

(Def. 2) There exists a finite sequence y of elements of the carrier of L such that

(i) len y = len SgmX(⊆n, support b) + 1,

(ii) y1 = 1L,
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(iii) eval(b, x) =
∏

y, and

(iv) for every natural number i such that 1 < i and i ¬ len y holds yi =

powerL((x · SgmX(⊆n, support b))i−1, (b · SgmX(⊆n, support b))i−1).

Next we state three propositions:

(16) Let n be an ordinal number, L be a non trivial unital non empty

double loop structure, and x be a function from n into L. Then

eval(EmptyBagn, x) = 1L.

(17) Let n be an ordinal number, L be a unital non trivial non empty double

loop structure, u be a set, and b be a bag of n. If support b = {u}, then

for every function x from n into L holds eval(b, x) = powerL(x(u), b(u)).

(18) Let n be an ordinal number, L be a right zeroed add-associative right

complementable unital distributive Abelian non trivial commutative asso-

ciative non empty double loop structure, b1, b2 be bags of n, and x be a

function from n into L. Then eval(b1 + b2, x) = eval(b1, x) · eval(b2, x).

4. Evaluation of Polynomials

Let n be an ordinal number, let L be an add-associative right zeroed right

complementable non empty loop structure, and let p, q be Polynomials of n, L.

Note that p− q is finite-Support.

The following proposition is true

(19) Let L be a right zeroed add-associative right complementable unital

distributive non trivial non empty double loop structure, n be an ordinal

number, and p be a Polynomial of n, L. If Support p = ∅, then p = 0 (n,L).

Let n be an ordinal number, let L be a right zeroed add-associative right

complementable unital distributive non trivial non empty double loop structure,

and let p be a Polynomial of n, L. Note that Support p is finite.

Next we state the proposition

(20) Let n be an ordinal number, L be a right zeroed add-associative ri-

ght complementable unital distributive non trivial non empty double loop

structure, and p be a Polynomial of n, L. Then BagOrdern linearly orders

Support p.

Let n be an ordinal number and let b be an element of Bagsn. The functor

bT yields a bag of n and is defined as follows:

(Def. 3) bT = b.

Let n be an ordinal number, let L be a right zeroed add-associative right

complementable unital distributive non trivial non empty double loop structure,

let p be a Polynomial of n, L, and let x be a function from n into L. The functor

eval(p, x) yields an element of L and is defined by the condition (Def. 4).
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(Def. 4) There exists a finite sequence y of elements of the carrier of L such that

(i) len y = len SgmX(BagOrdern,Support p) + 1,

(ii) y1 = 0L,

(iii) eval(p, x) =
∑

y, and

(iv) for every natural number i such that 1 < i and i ¬ len y holds yi =

(p · SgmX(BagOrdern,Support p))i−1 · eval(((SgmX(BagOrdern,

Support p))i−1)
T, x).

One can prove the following propositions:

(21) Let n be an ordinal number, L be a right zeroed add-associative ri-

ght complementable unital distributive non trivial non empty double

loop structure, p be a Polynomial of n, L, and b be a bag of n. If

Support p = {b}, then for every function x from n into L holds eval(p, x) =

p(b) · eval(b, x).

(22) Let n be an ordinal number, L be a right zeroed add-associative ri-

ght complementable unital distributive non trivial non empty double loop

structure, and x be a function from n into L. Then eval(0 (n,L), x) = 0L.

(23) Let n be an ordinal number, L be a right zeroed add-associative ri-

ght complementable unital distributive non trivial non empty double loop

structure, and x be a function from n into L. Then eval(1 (n,L), x) = 1L.

(24) Let n be an ordinal number, L be a right zeroed add-associative ri-

ght complementable unital distributive non trivial non empty double loop

structure, p be a Polynomial of n, L, and x be a function from n into L.

Then eval(−p, x) = −eval(p, x).

(25) Let n be an ordinal number, L be a right zeroed add-associative right

complementable Abelian unital distributive non trivial non empty double

loop structure, p, q be Polynomials of n, L, and x be a function from n

into L. Then eval(p + q, x) = eval(p, x) + eval(q, x).

(26) Let n be an ordinal number, L be a right zeroed add-associative right

complementable Abelian unital distributive non trivial non empty double

loop structure, p, q be Polynomials of n, L, and x be a function from n

into L. Then eval(p− q, x) = eval(p, x)− eval(q, x).

(27) Let n be an ordinal number, L be a right zeroed add-associative right

complementable Abelian unital distributive non trivial commutative asso-

ciative non empty double loop structure, p, q be Polynomials of n, L, and

x be a function from n into L. Then eval(p ∗ q, x) = eval(p, x) · eval(q, x).
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5. Evaluation Homomorphism

Let n be an ordinal number, let L be a right zeroed add-associative right

complementable unital distributive non trivial non empty double loop structure,

and let x be a function from n into L. The functor Polynom-Evaluation(n,L, x)

yielding a map from Polynom-Ring(n,L) into L is defined by:

(Def. 5) For every Polynomial p of n, L holds (Polynom-Evaluation(n,L, x))(p) =

eval(p, x).

Let n be an ordinal number and let L be a right zeroed Abelian add-

associative right complementable well unital distributive associative non trivial

non empty double loop structure. One can check that Polynom-Ring(n,L) is

well unital.

Let n be an ordinal number, let L be an Abelian right zeroed add-associative

right complementable well unital distributive associative non trivial non empty

double loop structure, and let x be a function from n into L.

Note that Polynom-Evaluation(n, L, x) is unity-preserving.

Let n be an ordinal number, let L be a right zeroed add-associative ri-

ght complementable Abelian unital distributive non trivial non empty double

loop structure, and let x be a function from n into L. One can verify that

Polynom-Evaluation(n,L, x) is additive.

Let n be an ordinal number, let L be a right zeroed add-associative right

complementable Abelian unital distributive non trivial commutative associative

non empty double loop structure, and let x be a function from n into L. Note

that Polynom-Evaluation(n,L, x) is multiplicative.

Let n be an ordinal number, let L be a right zeroed add-associative right

complementable Abelian well unital distributive non trivial commutative asso-

ciative non empty double loop structure, and let x be a function from n into L.

One can verify that Polynom-Evaluation(n,L, x) is ring homomorphism.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathe-
matics, 5(2):241–245, 1996.

[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.



338 christoph schwarzweller and andrzej trybulec

[10] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,
1(3):471–475, 1990.

[11] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields
and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.

[12] Beata Madras. On the concept of the triangulation. Formalized Mathematics, 5(3):457–
462, 1996.

[13] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring.
Formalized Mathematics, 2(1):3–11, 1991.

[14] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups
with zero. Formalized Mathematics, 1(5):833–840, 1990.

[15] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number
of variables. Formalized Mathematics, 9(1):95–110, 2001.

[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[17] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[19] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,
1990.

[20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[21] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,
1990.

[22] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized
Mathematics, 2(1):41–47, 1991.

[23] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski - Zorn lemma. Formalized
Mathematics, 1(2):387–393, 1990.

[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[25] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[26] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received April 14, 2000


