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The articles [8], [7], [1], [5], [2], [6], [9], [3], [14], [10], [12], [13], [4], and [11]

provide the terminology and notation for this paper.

1. Preliminaries

The following propositions are true:

(1) For every element z of C holds ||z|| = |z|.

(2) For all elements x1, y1, x2, y2 of R holds (x1 + y1i) · (x2 + y2i) = (x1 ·

x2 − y1 · y2) + (x1 · y2 + x2 · y1)i.

(3) For every real number r holds (r + 0i) · i = 0 + ri.

(4) For every real number r holds |r + 0i| = |r|.

(5) For every element z of C such that |z| 6= 0 holds |z|+ 0i = z
∗

|z|+0i
· z.

2. Some Facts on the Field of Complex Numbers

Let x, y be real numbers. The functor x + yiCF yielding an element of CF is

defined by:

(Def. 1) x + yiCF = x + yi.
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The element iCF of CF is defined by:

(Def. 2) iCF = i.

One can prove the following propositions:

(6) iCF = 0 + 1i and iCF = 0 + 1iCF .

(7) |iCF | = 1.

(8) iCF · iCF = −1CF
.

(9) (−1CF
) · −1CF

= 1CF
.

(10) For all real numbers x1, y1, x2, y2 holds (x1 + y1iCF) + (x2 + y2iCF) =

(x1 + x2) + (y1 + y2)iCF .

(11) For all real numbers x1, y1, x2, y2 holds (x1 + y1iCF) · (x2 + y2iCF) =

(x1 · x2 − y1 · y2) + (x1 · y2 + x2 · y1)iCF .

(12) For every element z of the carrier of CF holds ||z|| = |z|.

(13) For every real number r holds |r + 0iCF | = |r|.

(14) For every real number r holds (r + 0iCF) · iCF = 0 + riCF .

Let z be an element of the carrier of CF. The functor ℜ(z) yields a real

number and is defined as follows:

(Def. 3) There exists an element z′ of C such that z = z′ and ℜ(z) = ℜ(z′).

Let z be an element of the carrier of CF. The functor ℑ(z) yields a real

number and is defined as follows:

(Def. 4) There exists an element z′ of C such that z = z′ and ℑ(z) = ℑ(z′).

The following propositions are true:

(15) For all real numbers x, y holds ℜ(x + yiCF) = x and ℑ(x + yiCF) = y.

(16) For all elements x, y of the carrier of CF holds ℜ(x + y) = ℜ(x) + ℜ(y)

and ℑ(x + y) = ℑ(x) + ℑ(y).

(17) For all elements x, y of the carrier of CF holds ℜ(x · y) = ℜ(x) · ℜ(y)−

ℑ(x) · ℑ(y) and ℑ(x · y) = ℜ(x) · ℑ(y) + ℜ(y) · ℑ(x).

(18) For every element z of the carrier of CF holds ℜ(z) ¬ |z|.

(19) For every element z of the carrier of CF holds ℑ(z) ¬ |z|.

3. Functionals of Vector Space

Let K be a 1-sorted structure and let V be a vector space structure over K.

(Def. 5) A function from the carrier of V into the carrier of K is said to be a

functional in V .

Let K be a non empty loop structure, let V be a non empty vector space

structure over K, and let f , g be functionals in V . The functor f + g yielding a

functional in V is defined by:
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(Def. 6) For every element x of the carrier of V holds (f + g)(x) = f(x) + g(x).

Let K be a non empty loop structure, let V be a non empty vector space

structure over K, and let f be a functional in V . The functor −f yielding a

functional in V is defined by:

(Def. 7) For every element x of the carrier of V holds (−f)(x) = −f(x).

Let K be a non empty loop structure, let V be a non empty vector space

structure over K, and let f , g be functionals in V . The functor f − g yielding a

functional in V is defined by:

(Def. 8) f − g = f +−g.

Let K be a non empty groupoid, let V be a non empty vector space structure

over K, let v be an element of the carrier of K, and let f be a functional in V .

The functor v · f yields a functional in V and is defined by:

(Def. 9) For every element x of the carrier of V holds (v · f)(x) = v · f(x).

Let K be a non empty zero structure and let V be a vector space structure

over K. The functor 0FunctionalV yields a functional in V and is defined as

follows:

(Def. 10) 0FunctionalV = ΩV 7−→ 0K .

Let K be a non empty loop structure, let V be a non empty vector space

structure over K, and let F be a functional in V . We say that F is additive if

and only if:

(Def. 11) For all vectors x, y of V holds F (x + y) = F (x) + F (y).

Let K be a non empty groupoid, let V be a non empty vector space structure

over K, and let F be a functional in V . We say that F is homogeneous if and

only if:

(Def. 12) For every vector x of V and for every scalar r of V holds F (r·x) = r·F (x).

Let K be a non empty zero structure, let V be a non empty vector space

structure over K, and let F be a functional in V . We say that F is 0-preserving

if and only if:

(Def. 13) F (0V ) = 0K .

Let K be an add-associative right zeroed right complementable Abelian as-

sociative left unital distributive non empty double loop structure and let V be

a vector space over K. Note that every functional in V which is homogeneous

is also 0-preserving.

Let K be a right zeroed non empty loop structure and let V be a non empty

vector space structure over K. Note that 0FunctionalV is additive.

Let K be an add-associative right zeroed right complementable right distri-

butive non empty double loop structure and let V be a non empty vector space

structure over K. Observe that 0FunctionalV is homogeneous.

Let K be a non empty zero structure and let V be a non empty vector space

structure over K. Observe that 0FunctionalV is 0-preserving.
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Let K be an add-associative right zeroed right complementable right distri-

butive non empty double loop structure and let V be a non empty vector space

structure over K. Observe that there exists a functional in V which is additive,

homogeneous, and 0-preserving.

The following propositions are true:

(20) Let K be an Abelian non empty loop structure, V be a non empty vector

space structure over K, and f , g be functionals in V . Then f + g = g + f.

(21) Let K be an add-associative non empty loop structure, V be a non

empty vector space structure over K, and f , g, h be functionals in V .

Then (f + g) + h = f + (g + h).

(22) Let K be a non empty zero structure, V be a non empty vector

space structure over K, and x be an element of the carrier of V . Then

(0FunctionalV )(x) = 0K .

(23) Let K be a right zeroed non empty loop structure, V be a non empty

vector space structure over K, and f be a functional in V . Then f +

0FunctionalV = f.

(24) Let K be an add-associative right zeroed right complementable non

empty loop structure, V be a non empty vector space structure over K,

and f be a functional in V . Then f − f = 0FunctionalV.

(25) Let K be a right distributive non empty double loop structure, V be a

non empty vector space structure over K, r be an element of the carrier

of K, and f , g be functionals in V . Then r · (f + g) = r · f + r · g.

(26) Let K be a left distributive non empty double loop structure, V be a

non empty vector space structure over K, r, s be elements of the carrier

of K, and f be a functional in V . Then (r + s) · f = r · f + s · f.

(27) Let K be an associative non empty groupoid, V be a non empty vector

space structure over K, r, s be elements of the carrier of K, and f be a

functional in V . Then (r · s) · f = r · (s · f).

(28) Let K be a left unital non empty double loop structure, V be a non

empty vector space structure over K, and f be a functional in V . Then

1K · f = f.

LetK be an Abelian add-associative right zeroed right complementable right

distributive non empty double loop structure, let V be a non empty vector space

structure over K, and let f , g be additive functionals in V . Observe that f + g

is additive.

LetK be an Abelian add-associative right zeroed right complementable right

distributive non empty double loop structure, let V be a non empty vector space

structure over K, and let f be an additive functional in V . One can verify that

−f is additive.

Let K be an add-associative right zeroed right complementable right di-
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stributive non empty double loop structure, let V be a non empty vector space

structure overK, let v be an element of the carrier ofK, and let f be an additive

functional in V . Observe that v · f is additive.

Let K be an add-associative right zeroed right complementable right distri-

butive non empty double loop structure, let V be a non empty vector space

structure over K, and let f , g be homogeneous functionals in V . Observe that

f + g is homogeneous.

LetK be an Abelian add-associative right zeroed right complementable right

distributive non empty double loop structure, let V be a non empty vector space

structure over K, and let f be a homogeneous functional in V . One can check

that −f is homogeneous.

Let K be an add-associative right zeroed right complementable right distri-

butive associative commutative non empty double loop structure, let V be a non

empty vector space structure over K, let v be an element of the carrier of K,

and let f be a homogeneous functional in V . Observe that v ·f is homogeneous.

Let K be an add-associative right zeroed right complementable right distri-

butive non empty double loop structure and let V be a non empty vector space

structure overK. A linear functional in V is an additive homogeneous functional

in V .

4. The Vector Space of Linear Functionals

LetK be an Abelian add-associative right zeroed right complementable right

distributive associative commutative non empty double loop structure and let

V be a non empty vector space structure over K. The functor V ∗ yielding a non

empty strict vector space structure overK is defined by the conditions (Def. 14).

(Def. 14)(i) For every set x holds x ∈ the carrier of V ∗ iff x is a linear functional

in V ,

(ii) for all linear functionals f , g in V holds (the addition of V ∗)(f, g) =

f + g,

(iii) for every linear functional f in V holds (the reverse-map of V ∗)(f) =

−f,

(iv) the zero of V ∗ = 0FunctionalV, and

(v) for every linear functional f in V and for every element x of the carrier

of K holds (the left multiplication of V ∗)(x, f) = x · f.

LetK be an Abelian add-associative right zeroed right complementable right

distributive associative commutative non empty double loop structure and let

V be a non empty vector space structure over K. One can check that V ∗ is

Abelian.

LetK be an Abelian add-associative right zeroed right complementable right

distributive associative commutative non empty double loop structure and let
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V be a non empty vector space structure over K. One can verify the following

observations:

∗ V ∗ is add-associative,

∗ V ∗ is right zeroed, and

∗ V ∗ is right complemented.

Let K be an Abelian add-associative right zeroed right complementable left

unital distributive associative commutative non empty double loop structure

and let V be a non empty vector space structure over K. One can check that

V ∗ is vector space-like.

5. Semi Norm of Vector Space

Let K be a 1-sorted structure and let V be a vector space structure over K.

(Def. 15) A function from the carrier of V into R is said to be a RFunctional of

V .

Let K be a 1-sorted structure, let V be a non empty vector space structure

over K, and let F be a RFunctional of V . We say that F is subadditive if and

only if:

(Def. 16) For all vectors x, y of V holds F (x + y) ¬ F (x) + F (y).

Let K be a 1-sorted structure, let V be a non empty vector space structure

over K, and let F be a RFunctional of V . We say that F is additive if and only

if:

(Def. 17) For all vectors x, y of V holds F (x + y) = F (x) + F (y).

Let V be a non empty vector space structure over CF and let F be a RFunc-

tional of V . We say that F is Real-homogeneous if and only if:

(Def. 18) For every vector v of V and for every real number r holds F ((r + 0iCF) ·

v) = r · F (v).

One can prove the following proposition

(29) Let V be a vector space-like non empty vector space structure over CF

and F be a RFunctional of V . Suppose F is Real-homogeneous. Let v be a

vector of V and r be a real number. Then F ((0+ riCF) · v) = r ·F (iCF · v).

Let V be a non empty vector space structure over CF and let F be a RFunc-

tional of V . We say that F is homogeneous if and only if:

(Def. 19) For every vector v of V and for every scalar r of V holds F (r · v) =

|r| · F (v).

Let K be a 1-sorted structure, let V be a vector space structure over K, and

let F be a RFunctional of V . We say that F is 0-preserving if and only if:

(Def. 20) F (0V ) = 0.
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Let K be a 1-sorted structure and let V be a non empty vector space struc-

ture over K. One can verify that every RFunctional of V which is additive is

also subadditive.

Let V be a vector space over CF. Note that every RFunctional of V which

is Real-homogeneous is also 0-preserving.

Let K be a 1-sorted structure and let V be a vector space structure over K.

The functor 0RFunctionalV yielding a RFunctional of V is defined as follows:

(Def. 21) 0RFunctionalV = ΩV 7−→ 0.

Let K be a 1-sorted structure and let V be a non empty vector space struc-

ture over K. Note that 0RFunctionalV is additive and 0RFunctionalV is 0-

preserving.

Let V be a non empty vector space structure overCF. Note that 0RFunctionalV

is Real-homogeneous and 0RFunctionalV is homogeneous.

Let K be a 1-sorted structure and let V be a non empty vector space struc-

ture over K. Note that there exists a RFunctional of V which is additive and

0-preserving.

Let V be a non empty vector space structure over CF. One can check that

there exists a RFunctional of V which is additive, Real-homogeneous, and ho-

mogeneous.

Let V be a non empty vector space structure over CF. A Semi-Norm of V

is a subadditive homogeneous RFunctional of V .

6. The Hahn Banach Theorem

Let V be a non empty vector space structure over CF. The functor RealVSV

yielding a strict RLS structure is defined by the conditions (Def. 22).

(Def. 22)(i) The loop structure of RealVSV = the loop structure of V , and

(ii) for every real number r and for every vector v of V holds (the external

multiplication of RealVSV )(r, v) = (r + 0iCF) · v.

Let V be a non empty vector space structure over CF. Observe that RealVSV

is non empty.

Let V be an Abelian non empty vector space structure over CF. Observe

that RealVSV is Abelian.

Let V be an add-associative non empty vector space structure over CF. One

can check that RealVSV is add-associative.

Let V be a right zeroed non empty vector space structure over CF. Note

that RealVSV is right zeroed.

Let V be a right complementable non empty vector space structure over CF.

One can check that RealVSV is right complementable.
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Let V be a vector space-like non empty vector space structure over CF. Note

that RealVSV is real linear space-like.

One can prove the following three propositions:

(30) For every non empty vector space V over CF and for every subspace M

of V holds RealVSM is a subspace of RealVSV.

(31) For every non empty vector space structure V over CF holds every

RFunctional of V is a functional in RealVSV.

(32) For every non empty vector space V over CF holds every Semi-Norm of

V is a Banach functional in RealVSV.

Let V be a non empty vector space structure over CF and let l be a functional

in V . The functor projRe l yielding a functional in RealVSV is defined by:

(Def. 23) For every element i of the carrier of V holds (projRe l)(i) = ℜ(l(i)).

Let V be a non empty vector space structure over CF and let l be a functional

in V . The functor projIm l yields a functional in RealVSV and is defined as

follows:

(Def. 24) For every element i of the carrier of V holds (projIm l)(i) = ℑ(l(i)).

Let V be a non empty vector space structure over CF and let l be a functional

in RealVSV. The functor lR→C yielding a RFunctional of V is defined by:

(Def. 25) lR→C = l.

Let V be a non empty vector space structure over CF and let l be a RFunc-

tional of V . The functor lC→R yields a functional in RealVSV and is defined

by:

(Def. 26) lC→R = l.

Let V be a non empty vector space over CF and let l be an additive functional

in RealVSV. One can check that lR→C is additive.

Let V be a non empty vector space over CF and let l be an additive RFunc-

tional of V . Observe that lC→R is additive.

Let V be a non empty vector space over CF and let l be a homogeneous

functional in RealVSV. Observe that lR→C is Real-homogeneous.

Let V be a non empty vector space over CF and let l be a Real-homogeneous

RFunctional of V . One can verify that lC→R is homogeneous.

Let V be a non empty vector space structure over CF and let l be a RFunc-

tional of V . The functor i-shift l yields a RFunctional of V and is defined by:

(Def. 27) For every element v of the carrier of V holds (i-shift l)(v) = l(iCF · v).

Let V be a non empty vector space structure over CF and let l be a functional

in RealVSV. The functor prodReIm l yielding a functional in V is defined as

follows:

(Def. 28) For every element v of the carrier of V holds (prodReIm l)(v) =

(lR→C)(v) + (−(i-shift lR→C)(v))iCF .
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The following four propositions are true:

(33) Let V be a non empty vector space over CF and l be a linear functional

in V . Then projRe l is a linear functional in RealVSV.

(34) Let V be a non empty vector space over CF and l be a linear functional

in V . Then projIm l is a linear functional in RealVSV.

(35) Let V be a non empty vector space over CF and l be a linear functional

in RealVSV. Then prodReIm l is a linear functional in V .

(36) Let V be a non empty vector space over CF, p be a Semi-Norm of V ,

M be a subspace of V , and l be a linear functional in M . Suppose that

for every vector e of M and for every vector v of V such that v = e holds

|l(e)| ¬ p(v). Then there exists a linear functional L in V such that L↾the

carrier of M = l and for every vector e of V holds |L(e)| ¬ p(e).
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