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Summary. This article contains the definition and many facts about the
field of complex numbers.

MML Identifier: COMPLFLD.

The articles [4], [1], [2], [5], [6], and [3] provide the terminology and notation for
this paper.
The following propositions are true:

(1) 1¢ # Oc.
(2) For all elements x1, y1, z2, y2 of R holds (x1 + y1i) + (x2 + y21) =
(1 +22) + (Y1 + y2)i-
The strict double loop structure Cp is defined by the conditions (Def. 1).

(Def. 1)(i)  The carrier of Cp = C,
(ii)  the addition of Cp = +¢,
(iii)  the multiplication of Cy = -,
(iv)  the unity of Cp = 1¢, and

(v)  the zero of Cy = Oc.

Let us observe that Cg is non empty.

Let us observe that Cy is add-associative right zeroed right complementable
Abelian commutative associative left unital right unital distributive field-like
and non degenerated.

We now state several propositions:

(3) For all elements 1, y; of the carrier of Cp and for all elements xa, yo of
C such that x1 = 29 and y; = y2 holds z1 + y1 = z2 + yo.

(4) For every element x; of the carrier of Cy and for every element xo of C
such that 1 = x5 holds —x1 = —x9.
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(5) For all elements z1, y; of the carrier of Cp and for all elements x2, yo of
C such that x1 = x9 and y; = yo holds x1 — y1 = z2 — ¥o.

(6) For all elements z1, y; of the carrier of Cp and for all elements xo, yo of
C such that x1 = x9 and y; = yo holds x1 - y1 = 2 - ys.

(7) For every element x; of the carrier of Cp and for every element x5 of C

such that 1 = z2 and x1 # Oc, holds x1 L =a L

(8) Let x1, y1 be elements of the carrier of Cp and z2, y2 be elements of C.
If 21 = x2 and y; = y2 and y1 # Oc;, then % = %
(9) Ocp =0c.
(10) 1¢, = 1c.
(11) 1c, + 1cp # Ocp-
Let z be an element of the carrier of Cp. The functor z* yielding an element
of Cp is defined by:
(Def. 2) There exists an element 2’ of C such that z = 2’ and 2* = 2/*.

Let z be an element of the carrier of Cy. The functor |z| yielding an element
of R is defined by:
(Def. 3) There exists an element 2’ of C such that z = 2’ and |z| = |2/|.
We now state the proposition
(12) For every element x; of the carrier of Cr and for every element x5 of C
such that 1 = x5 holds x1* = x9™*.
In the sequel z, z1, 22, 23, 24 denote elements of the carrier of Cp.
One can prove the following propositions:
(13 21+ (22 + 23) = (21 + ZQ) + z3.
(14) (The zero of Cp) + z = z and z + the zero of Cp = 2.
(15) z1-(22-23) = (21 22) - 23.
(16) z-(21+20)=z-21+z2-20and (21 +22) - 2=21 -2+ 29" 2.
(17

~— — — ~— —

(The zero of Cp) - z = the zero of Cg and z - the zero of Cp = the zero
of (CF

(18) (The unity of Cp) - z = z and z - the unity of Cp = z.
(19) —the zero of Cy = the zero of Cg.

(20) If —z = the zero of Cp, then z = the zero of Cp.

(21) z+4 —z = the zero of Cp and —z + z = the zero of Cp.
(22) If 21 4+ 29 = the zero of Cp, then zo = —2z1 and 21 = —25.
(23) ——z=2z.

(24) 1If —z1 = —z9, then 21 = 2.

(25) Ifz1+z=2z20+4+zo0r 21 + 2=z + 29, then z; = z9.

(26) —(2z1+ 22) = —21 + —22.

(27) (—2z1)-22=—21-22 and 21 - —2z3 = —27 - 22.
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(28) (—z1) - —22 =21 - 22.

(29) —z = (—the unity of Cp) - 2.

(30) 21 — 29 =21 + —20.

(31) If z; — 2o = the zero of Cp, then z; = 2.

(32) =z — z = the zero of Cp.

(33) z — the zero of Cy = z.

(34) (The zero of Cp) — 2z = —=z.

(35) 21— —z2 = 21 + 22.

(36) —(2z1 — 22) = —21 + 22.

(37) —(z1 — 22) = 22 — 21.

(38) 21+ (22 — 23) = (21 + 22) — 23.

(39) 21— (22— 23) = (21 — 22) + 23.

(40) 2z — 29 — 23 = 21 — (22 + 23).

(41) 2z = (214 2) — 2.

(42) z1=(21—2) + =

(43) z-(z21—22)=2z-21—2-29and (21 —22) - 2=21-2— 22 2.
(44) If z # the zero of Cp, then z - 27! = the unity of Cy and 27! - 2z = the

unity of Cg.

(45) If z1 - z9 = the zero of Cp, then z; = the zero of Cg or zo = the zero of
Cr.

(46) If z # the zero of Cp, then 27! # the zero of Cp.

(47) If z; # the zero of Cp and z3 # the zero of Cr and 237! = 257!, then
zZ1 = 292.

(48) 1If z9 # the zero of Cg and if 21 - z5 = the unity of Cp or 29 - 21 = the
unity of Cp, then z; = 27 1.

(49) If 25 # the zero of Cp and if 21 - 20 = 23 Or 29-21 = 23, then 21 = z3-297"
and 21 = 2o~ - z3.

(50) (The unity of Cp)~! = the unity of Cg.

(51) If z; # the zero of Cy and 2o # the zero of Cp, then (z1 - 29)~% =
2171 . 2271.

(52) If z # the zero of Cp, then (271)71 = 2.

(53) If z # the zero of Cp, then (—2)~! = —z~1.

(54) 1If z # the zero of Cp and if 21 - 2 =29z or 21 - 2 = 2z - 29, then z; = 29.

(55) If 21 # the zero of Cp and zo # the zero of Cp, then z; 7! + 27! =
(21 + 22) . (21 . Zz)_l.

(56) If z1 # the zero of Cp and 2o # the zero of Cp, then z; 7! — 27! =
(22 — Zl) . (2’1 . 22)_1.

(57) If 29 # the zero of Cp, then 2L = 21 - 271,

z2
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If z # the zero of Cp, then 271 = M‘

(58)
( ) the uni‘fy of Cg ==z

(60) If z # the zero of C, then Z = the unity of Cr.
(61) If z # the zero of Cp, then w = the zero of Cp.
(62)

If z9 # the zero of Cy and j—; = the zero of Cg, then 2z;
Cr.

If 29 # the zero of Cg, then z - 2—1 = Z21

z2
If z # the zero of Cp, then 21 LE

-1
2

If 29 # the zero of Cp, then - _1 =z - 29.

—1

z2

If z; # the zero of Cy and 2y # the zero of Cy, then z; !

21 _ 221
29 z-z9 "

(73) 1If z9 # the zero of Cg and z3 # the zero of Cp, then -2 =

2923

(74) 1If z9 # the zero of Cy and z3 # the zero of Cp, then 23 =

z2

If 21 # the zero of Cg and 29 # the zero of Cg, then 21—,1 =

)
)
)
)
67) If z; # the zero of Cp and 2y # the zero of Cp, then (%)_1 =2,
)
)
)
)
)

If z # the zero of Cp and 2o # the zero of Cp, then 2 =

22

= the zero of

If z9 # the zero of Cg and z4 # the zero of Cy, then % s P = S

24

Z22-24

If 29 # the zero of Cy and Zl = the unity of Cg, then z; = z5.

21

z2

z1 "

If z1 # the zero of Cg and 2z 75 the zero of Cp, then 2L — = (21 - 29) L.

z

z2 21°22 "

212
292

and

(75) If z9 # the zero of Cg and z3 # the zero of Cy and z4 # the zero of Cy,
Z1

Z2 _ Z14
then = = 221
24

If 2 # the zero of Cy and zy # the zero of Cp, then 2L + 2
If z # the zero of Cp, then Z 4 22 = 2122,

z

If 29 # the zero of Cg, then —Z—l = Z’ZI and —j—; = f—;z

If zp # the zero of Cp, then 7} = =2

72«2'
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If 2z # the zero of Cy, then 2 — 22 = 2222

z z z

83) (the zero of Cg)* = the zero of Cp.

84) 1If z* = the zero of Cp, then z = the zero of Cp.
85) (the umty of Cp)* = the unity of Cg.

86) ()" =

87) (=1 + ,22) = 21" + 20%.

88) (—2)" = —z*.

89) (21 —22)" = z1* — 22",

If zo # the zero of Cg and z4 # the zero of Cp, then j—; -2 =

21-24+23-22
zZ2°Z24

Z1'Z4—23°22
2924 :

If 29 # the zero of Cg and if 21 - 29 = z3 or 2z - 21 = 23, then z; = i—;’
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(90) (21 . 22)* == Zl* . 22*.
(91) If 2z # the zero of Cp, then (z71)* = (2*)71.
92) If 29 # the zero of Cp, then (Z)* = 2L,
29 z2
93) |the zero of Cg| = 0.
(
(94) 1If |z| = 0, then z = the zero of Cp.
(95) 0 < |z|.
(96) z # the zero of Cy iff 0 < |z|.
(97) |the unity of Cp| = 1.
98) || = 2.
99) [2*] = |4I.
(100) [21 + 22| < [21] + |22].
(101) |21 - ZQ’ < |2’1‘ + ’22‘
(102) |Zl‘ - ’22| < |Zl + 22|.
(103) ’21‘ - ’22‘ < ‘Zl — 22‘.
(104) |z — 22| = |22 — 21].
(105) |21 — 22| = 0 iff 21 = 29.
(106) 21 7& 29 iff 0 < |2’1 — ZQ|.
(107) |21 — 22| < |21 — 2| + |2 — 22].
(108)  [[z1] — |22|| <21 — 22l
(109) |21+ 2] = |2a] - [2a].
(110) If z # the zero of Cp, then |21 = |2|71.
111) If 29 # the zero of Cp, then laal — jzy
|22 22
(112) |z-z| =z - 2*|.
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