The Field of Complex Numbers

Anna Justyna Milewska University of Białystok

Summary. This article contains the definition and many facts about the field of complex numbers.

MML Identifier: COMPLFLD.

The articles [4], [1], [2], [5], [6], and [3] provide the terminology and notation for this paper.

The following propositions are true:

- (1) $1_{\mathbb{C}} \neq 0_{\mathbb{C}}$.
- (2) For all elements x_1, y_1, x_2, y_2 of \mathbb{R} holds $(x_1 + y_1i) + (x_2 + y_2i) = (x_1 + x_2) + (y_1 + y_2)i$.

The strict double loop structure \mathbb{C}_{F} is defined by the conditions (Def. 1).

(Def. 1)(i) The carrier of $\mathbb{C}_{\mathrm{F}} = \mathbb{C}$,

- (ii) the addition of $\mathbb{C}_{\mathrm{F}} = +_{\mathbb{C}}$,
- (iii) the multiplication of $\mathbb{C}_{\mathrm{F}} = \cdot_{\mathbb{C}}$,
- (iv) the unity of $\mathbb{C}_{\mathrm{F}} = 1_{\mathbb{C}}$, and
- (v) the zero of $\mathbb{C}_F = 0_{\mathbb{C}}$.

Let us observe that \mathbb{C}_{F} is non empty.

Let us observe that \mathbb{C}_F is add-associative right zeroed right complementable Abelian commutative associative left unital right unital distributive field-like and non degenerated.

We now state several propositions:

- (3) For all elements x_1 , y_1 of the carrier of \mathbb{C}_F and for all elements x_2 , y_2 of \mathbb{C} such that $x_1 = x_2$ and $y_1 = y_2$ holds $x_1 + y_1 = x_2 + y_2$.
- (4) For every element x_1 of the carrier of \mathbb{C}_F and for every element x_2 of \mathbb{C} such that $x_1 = x_2$ holds $-x_1 = -x_2$.

- (5) For all elements x_1 , y_1 of the carrier of \mathbb{C}_F and for all elements x_2 , y_2 of \mathbb{C} such that $x_1 = x_2$ and $y_1 = y_2$ holds $x_1 y_1 = x_2 y_2$.
- (6) For all elements x_1 , y_1 of the carrier of \mathbb{C}_F and for all elements x_2 , y_2 of \mathbb{C} such that $x_1 = x_2$ and $y_1 = y_2$ holds $x_1 \cdot y_1 = x_2 \cdot y_2$.
- (7) For every element x_1 of the carrier of \mathbb{C}_F and for every element x_2 of \mathbb{C} such that $x_1 = x_2$ and $x_1 \neq 0_{\mathbb{C}_F}$ holds $x_1^{-1} = x_2^{-1}$.
- (8) Let x_1 , y_1 be elements of the carrier of \mathbb{C}_F and x_2 , y_2 be elements of \mathbb{C} . If $x_1 = x_2$ and $y_1 = y_2$ and $y_1 \neq 0_{\mathbb{C}_F}$, then $\frac{x_1}{y_1} = \frac{x_2}{y_2}$.
- $(9) \quad 0_{\mathbb{C}_{\mathrm{F}}} = 0_{\mathbb{C}}.$
- (10) $\mathbf{1}_{\mathbb{C}_{F}} = 1_{\mathbb{C}}.$
- (11) $\mathbf{1}_{\mathbb{C}_{\mathrm{F}}} + \mathbf{1}_{\mathbb{C}_{\mathrm{F}}} \neq 0_{\mathbb{C}_{\mathrm{F}}}.$

Let z be an element of the carrier of $\mathbb{C}_{\mathcal{F}}$. The functor z^* yielding an element of $\mathbb{C}_{\mathcal{F}}$ is defined by:

(Def. 2) There exists an element z' of \mathbb{C} such that z=z' and $z^*=z'^*$.

Let z be an element of the carrier of \mathbb{C}_{F} . The functor |z| yielding an element of \mathbb{R} is defined by:

(Def. 3) There exists an element z' of \mathbb{C} such that z=z' and |z|=|z'|.

We now state the proposition

(12) For every element x_1 of the carrier of \mathbb{C}_F and for every element x_2 of \mathbb{C} such that $x_1 = x_2$ holds $x_1^* = x_2^*$.

In the sequel z, z_1, z_2, z_3, z_4 denote elements of the carrier of \mathbb{C}_{F} .

One can prove the following propositions:

- (13) $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3.$
- (14) (The zero of \mathbb{C}_{F}) + z = z and z + the zero of $\mathbb{C}_{\mathrm{F}} = z$.
- $(15) \quad z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3.$
- (16) $z \cdot (z_1 + z_2) = z \cdot z_1 + z \cdot z_2$ and $(z_1 + z_2) \cdot z = z_1 \cdot z + z_2 \cdot z$.
- (17) (The zero of \mathbb{C}_{F}) $\cdot z =$ the zero of \mathbb{C}_{F} and $z \cdot$ the zero of $\mathbb{C}_{\mathrm{F}} =$ the zero of \mathbb{C}_{F} .
- (18) (The unity of \mathbb{C}_{F}) $\cdot z = z$ and $z \cdot \text{the unity of } \mathbb{C}_{\mathrm{F}} = z$.
- (19) -the zero of \mathbb{C}_{F} = the zero of \mathbb{C}_{F} .
- (20) If -z = the zero of \mathbb{C}_{F} , then z = the zero of \mathbb{C}_{F} .
- (21) z + -z =the zero of \mathbb{C}_{F} and -z + z =the zero of \mathbb{C}_{F} .
- (22) If $z_1 + z_2 = \text{the zero of } \mathbb{C}_F$, then $z_2 = -z_1$ and $z_1 = -z_2$.
- $(23) \quad --z = z.$
- (24) If $-z_1 = -z_2$, then $z_1 = z_2$.
- (25) If $z_1 + z = z_2 + z$ or $z_1 + z = z + z_2$, then $z_1 = z_2$.
- $(26) \quad -(z_1+z_2)=-z_1+-z_2.$
- (27) $(-z_1) \cdot z_2 = -z_1 \cdot z_2$ and $z_1 \cdot -z_2 = -z_1 \cdot z_2$.

- $(28) \quad (-z_1) \cdot -z_2 = z_1 \cdot z_2.$
- (29) $-z = (-\text{the unity of } \mathbb{C}_{\mathbf{F}}) \cdot z.$
- $(30) \quad z_1 z_2 = z_1 + -z_2.$
- (31) If $z_1 z_2 =$ the zero of \mathbb{C}_F , then $z_1 = z_2$.
- (32) z-z= the zero of \mathbb{C}_{F} .
- (33) z the zero of $\mathbb{C}_{\mathbf{F}} = z$.
- (34) (The zero of \mathbb{C}_{F}) -z=-z.
- $(35) \quad z_1 -z_2 = z_1 + z_2.$
- $(36) \quad -(z_1 z_2) = -z_1 + z_2.$
- $(37) \quad -(z_1-z_2)=z_2-z_1.$
- $(38) z_1 + (z_2 z_3) = (z_1 + z_2) z_3.$
- $(39) z_1 (z_2 z_3) = (z_1 z_2) + z_3.$
- $(40) z_1 z_2 z_3 = z_1 (z_2 + z_3).$
- $(41) z_1 = (z_1 + z) z.$
- $(42) z_1 = (z_1 z) + z.$
- (43) $z \cdot (z_1 z_2) = z \cdot z_1 z \cdot z_2$ and $(z_1 z_2) \cdot z = z_1 \cdot z z_2 \cdot z$.
- (44) If $z \neq$ the zero of \mathbb{C}_{F} , then $z \cdot z^{-1} =$ the unity of \mathbb{C}_{F} and $z^{-1} \cdot z =$ the unity of \mathbb{C}_{F} .
- (45) If $z_1 \cdot z_2 =$ the zero of \mathbb{C}_F , then $z_1 =$ the zero of \mathbb{C}_F or $z_2 =$ the zero of \mathbb{C}_F .
- (46) If $z \neq$ the zero of \mathbb{C}_{F} , then $z^{-1} \neq$ the zero of \mathbb{C}_{F} .
- (47) If $z_1 \neq$ the zero of \mathbb{C}_F and $z_2 \neq$ the zero of \mathbb{C}_F and $z_1^{-1} = z_2^{-1}$, then $z_1 = z_2$.
- (48) If $z_2 \neq$ the zero of \mathbb{C}_F and if $z_1 \cdot z_2 =$ the unity of \mathbb{C}_F or $z_2 \cdot z_1 =$ the unity of \mathbb{C}_F , then $z_1 = z_2^{-1}$.
- (49) If $z_2 \neq$ the zero of \mathbb{C}_F and if $z_1 \cdot z_2 = z_3$ or $z_2 \cdot z_1 = z_3$, then $z_1 = z_3 \cdot z_2^{-1}$ and $z_1 = z_2^{-1} \cdot z_3$.
- (50) (The unity of \mathbb{C}_{F})⁻¹ = the unity of \mathbb{C}_{F} .
- (51) If $z_1 \neq$ the zero of \mathbb{C}_F and $z_2 \neq$ the zero of \mathbb{C}_F , then $(z_1 \cdot z_2)^{-1} = z_1^{-1} \cdot z_2^{-1}$.
- (52) If $z \neq$ the zero of \mathbb{C}_{F} , then $(z^{-1})^{-1} = z$.
- (53) If $z \neq \text{the zero of } \mathbb{C}_{F}$, then $(-z)^{-1} = -z^{-1}$.
- (54) If $z \neq$ the zero of \mathbb{C}_F and if $z_1 \cdot z = z_2 \cdot z$ or $z_1 \cdot z = z \cdot z_2$, then $z_1 = z_2$.
- (55) If $z_1 \neq$ the zero of \mathbb{C}_F and $z_2 \neq$ the zero of \mathbb{C}_F , then $z_1^{-1} + z_2^{-1} = (z_1 + z_2) \cdot (z_1 \cdot z_2)^{-1}$.
- (56) If $z_1 \neq$ the zero of \mathbb{C}_F and $z_2 \neq$ the zero of \mathbb{C}_F , then $z_1^{-1} z_2^{-1} = (z_2 z_1) \cdot (z_1 \cdot z_2)^{-1}$.
- (57) If $z_2 \neq$ the zero of \mathbb{C}_F , then $\frac{z_1}{z_2} = z_1 \cdot z_2^{-1}$.

- (58) If $z \neq$ the zero of \mathbb{C}_{F} , then $z^{-1} = \frac{\text{the unity of } \mathbb{C}_{\mathrm{F}}}{z}$.
- (59) $\frac{z}{\text{the unity of } \mathbb{C}_{\mathrm{F}}} = z.$
- (60) If $z \neq$ the zero of \mathbb{C}_{F} , then $\frac{z}{z}$ = the unity of \mathbb{C}_{F} .
- (61) If $z \neq$ the zero of \mathbb{C}_{F} , then $\frac{\text{the zero of } \mathbb{C}_{F}}{z} = \text{the zero of } \mathbb{C}_{F}$.
- (62) If $z_2 \neq$ the zero of \mathbb{C}_F and $\frac{z_1}{z_2}$ = the zero of \mathbb{C}_F , then z_1 = the zero of
- (63) If $z_2 \neq$ the zero of \mathbb{C}_F and $z_4 \neq$ the zero of \mathbb{C}_F , then $\frac{z_1}{z_2} \cdot \frac{z_3}{z_4} = \frac{z_1 \cdot z_3}{z_2 \cdot z_4}$
- (64) If $z_2 \neq$ the zero of \mathbb{C}_F , then $z \cdot \frac{z_1}{z_2} = \frac{z \cdot z_1}{z_2}$. (65) If $z_2 \neq$ the zero of \mathbb{C}_F and $\frac{z_1}{z_2} =$ the unity of \mathbb{C}_F , then $z_1 = z_2$.
- (66) If $z \neq$ the zero of \mathbb{C}_F , then $z_1 = \frac{z_1 \cdot z}{z}$.
- (67) If $z_1 \neq$ the zero of \mathbb{C}_F and $z_2 \neq$ the zero of \mathbb{C}_F , then $(\frac{z_1}{z_2})^{-1} = \frac{z_2}{z_1}$.
- (68) If $z_1 \neq$ the zero of \mathbb{C}_F and $z_2 \neq$ the zero of \mathbb{C}_F , then $\frac{z_1^{-1}}{z_2^{-1}} = \frac{z_2}{z_1}$.
- (69) If $z_2 \neq$ the zero of \mathbb{C}_F , then $\frac{z_1}{z_2-1} = z_1 \cdot z_2$.
- (70) If $z_1 \neq$ the zero of \mathbb{C}_F and $z_2 \neq$ the zero of \mathbb{C}_F , then $\frac{z_1^{-1}}{z_2} = (z_1 \cdot z_2)^{-1}$.
- (71) If $z_1 \neq$ the zero of \mathbb{C}_F and $z_2 \neq$ the zero of \mathbb{C}_F , then $z_1^{-1} \cdot \frac{z}{z_2} = \frac{z}{z_1 \cdot z_2}$. (72) If $z \neq$ the zero of \mathbb{C}_F and $z_2 \neq$ the zero of \mathbb{C}_F , then $\frac{z_1}{z_2} = \frac{z_1 \cdot z}{z_2 \cdot z}$ and
- (73) If $z_2 \neq$ the zero of \mathbb{C}_F and $z_3 \neq$ the zero of \mathbb{C}_F , then $\frac{z_1}{z_2 \cdot z_3} = \frac{z_1}{z_3}$. (74) If $z_2 \neq$ the zero of \mathbb{C}_F and $z_3 \neq$ the zero of \mathbb{C}_F , then $\frac{z_1 \cdot z_3}{z_2} = \frac{z_1}{z_2}$.
- (75) If $z_2 \neq \text{the zero of } \mathbb{C}_F$ and $z_3 \neq \text{the zero of } \mathbb{C}_F$ and $z_4 \neq \text{the zero of } \mathbb{C}_F$, then $\frac{z_1}{z_2} = \frac{z_1 \cdot z_4}{z_2 \cdot z_3}$.
- (76) If $z_2 \neq$ the zero of \mathbb{C}_F and $z_4 \neq$ the zero of \mathbb{C}_F , then $\frac{z_1}{z_2} + \frac{z_3}{z_4} = \frac{z_1 \cdot z_4 + z_3 \cdot z_2}{z_2 \cdot z_4}$.
- (77) If $z \neq$ the zero of \mathbb{C}_{F} , then $\frac{z_{1}}{z} + \frac{z_{2}}{z} = \frac{z_{1} + z_{2}}{z}$. (78) If $z_{2} \neq$ the zero of \mathbb{C}_{F} , then $-\frac{z_{1}}{z_{2}} = \frac{-z_{1}}{z_{2}}$ and $-\frac{z_{1}}{z_{2}} = \frac{z_{1}}{-z_{2}}$.
- (79) If $z_2 \neq$ the zero of \mathbb{C}_F , then $\frac{z_1}{z_2} = \frac{-z_1}{-z_2}$.
- (80) If $z_2 \neq$ the zero of \mathbb{C}_F and $z_4 \neq$ the zero of \mathbb{C}_F , then $\frac{z_1}{z_2} \frac{z_3}{z_4} = \frac{z_1 \cdot z_4 z_3 \cdot z_2}{z_2 \cdot z_4}$
- (81) If $z \neq$ the zero of \mathbb{C}_F , then $\frac{z_1}{z} \frac{z_2}{z} = \frac{z_1 z_2}{z}$.
- (82) If $z_2 \neq$ the zero of \mathbb{C}_F and if $z_1 \cdot z_2 = z_3$ or $z_2 \cdot z_1 = z_3$, then $z_1 = \frac{z_3}{z_2}$.
- (83) (the zero of \mathbb{C}_{F})* = the zero of \mathbb{C}_{F} .
- (84) If z^* = the zero of \mathbb{C}_F , then z = the zero of \mathbb{C}_F .
- (85) (the unity of \mathbb{C}_{F})* = the unity of \mathbb{C}_{F} .
- $(86) \quad (z^*)^* = z.$
- $(87) \quad (z_1 + z_2)^* = z_1^* + z_2^*.$
- (88) $(-z)^* = -z^*$.
- $(89) \quad (z_1 z_2)^* = z_1^* z_2^*.$

- $(90) \quad (z_1 \cdot z_2)^* = z_1^* \cdot z_2^*.$
- (91) If $z \neq$ the zero of \mathbb{C}_{F} , then $(z^{-1})^{*} = (z^{*})^{-1}$.
- (92) If $z_2 \neq$ the zero of \mathbb{C}_F , then $(\frac{z_1}{z_2})^* = \frac{{z_1}^*}{{z_2}^*}$.
- (93) the zero of $\mathbb{C}_{\mathrm{F}}|=0$.
- (94) If |z| = 0, then z = the zero of $\mathbb{C}_{\mathbf{F}}$.
- (95) $0 \le |z|$.
- (96) $z \neq \text{the zero of } \mathbb{C}_{F} \text{ iff } 0 < |z|.$
- (97) | the unity of $\mathbb{C}_{\mathrm{F}}|=1$.
- (98) |-z| = |z|.
- $(99) |z^*| = |z|.$
- $(100) |z_1 + z_2| \le |z_1| + |z_2|.$
- $(101) |z_1 z_2| \leq |z_1| + |z_2|.$
- $(102) \quad |z_1| |z_2| \leqslant |z_1 + z_2|.$
- $(103) |z_1| |z_2| \le |z_1 z_2|.$
- $(104) |z_1 z_2| = |z_2 z_1|.$
- $(105) |z_1 z_2| = 0 \text{ iff } z_1 = z_2.$
- (106) $z_1 \neq z_2 \text{ iff } 0 < |z_1 z_2|.$
- $(107) |z_1 z_2| \le |z_1 z| + |z z_2|.$
- $(108) \quad ||z_1| |z_2|| \le |z_1 z_2|.$
- $(109) |z_1 \cdot z_2| = |z_1| \cdot |z_2|.$
- (110) If $z \neq$ the zero of \mathbb{C}_F , then $|z^{-1}| = |z|^{-1}$.
- (111) If $z_2 \neq$ the zero of \mathbb{C}_F , then $\frac{|z_1|}{|z_2|} = |\frac{z_1}{z_2}|$.
- $(112) |z \cdot z| = |z \cdot z^*|.$

References

- [1] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
- [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [3] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [4] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [5] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,
- [6] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received January 18, 2000