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The articles [1], [12], [7], [8], [9], [10], [19], [2], [26], [14], [24], [20], [21], [28], [29],

[22], [27], [23], [17], [13], [31], [6], [16], [15], [4], [11], [5], [18], [3], [30], and [25]

provide the terminology and notation for this paper.

1. Preliminaries

The following propositions are true:

(1) 21 = {0, 1}.

(2) For every set X and for every subset Y of X holds rng(idX↾Y ) = Y.

(3) For every function f and for all sets a, b holds (f+·(a7−→. b))(a) = b.

Let us observe that there exists a relational structure which is strict and

empty.

Next we state four propositions:

(4) Let S be an empty 1-sorted structure, T be a 1-sorted structure, and f

be a map from S into T . If rng f = ΩT , then T is empty.

(5) Let S be a 1-sorted structure, T be an empty 1-sorted structure, and f

be a map from S into T . If dom f = ΩS , then S is empty.

(6) Let S be a non empty 1-sorted structure, T be a 1-sorted structure, and

f be a map from S into T . If dom f = ΩS , then T is non empty.
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(7) Let S be a 1-sorted structure, T be a non empty 1-sorted structure, and

f be a map from S into T . If rng f = ΩT , then S is non empty.

Let S be a non empty reflexive relational structure, let T be a non empty

relational structure, and let f be a map from S into T . Let us observe that f is

directed-sups-preserving if and only if:

(Def. 1) For every non empty directed subset X of S holds f preserves sup of X.

Let R be a 1-sorted structure and let N be a net structure over R. We say

that N is function yielding if and only if:

(Def. 2) The mapping of N is function yielding.

Let us note that there exists a 1-sorted structure which is strict, non empty,

and constituted functions.

One can verify that there exists a relational structure which is strict, non

empty, and constituted functions.

Let R be a constituted functions 1-sorted structure. One can verify that

every net structure over R is function yielding.

Let R be a constituted functions 1-sorted structure. Note that there exists

a net structure over R which is strict and function yielding.

Let R be a non empty constituted functions 1-sorted structure. Note that

there exists a net structure over R which is strict, non empty, and function

yielding.

Let R be a constituted functions 1-sorted structure and let N be a func-

tion yielding net structure over R. Observe that the mapping of N is function

yielding.

Let R be a non empty constituted functions 1-sorted structure. Note that

there exists a net in R which is strict and function yielding.

Let S be a non empty 1-sorted structure and let N be a non empty net

structure over S. Note that rng (the mapping of N) is non empty.

Let S be a non empty 1-sorted structure and let N be a non empty net

structure over S. Observe that rng netmap(N,S) is non empty.

One can prove the following two propositions:

(8) Let A, B, C be non empty relational structures, f be a map from B into

C, and g, h be maps from A into B. If g ¬ h and f is monotone, then

f · g ¬ f · h.

(9) Let S be a non empty topological space, T be a non empty topological

space-like FR-structure, f , g be maps from S into T , and x, y be elements

of [S → T ]. If x = f and y = g, then x ¬ y iff f ¬ g.

Let I be a set and let R be a non empty relational structure. Note that every

element of the carrier of RI is function-like and relation-like.

Let I be a non empty set, let R be a non empty relational structure, let f

be an element of the carrier of RI , and let i be an element of I. Then f(i) is an

element of R.
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2. Some Properties of Isomorphism between Relational Structures

One can prove the following proposition

(10) For all relational structures S, T and for every map f from S into T

such that f is isomorphic holds f is onto.

Let S, T be relational structures. Note that every map from S into T which

is isomorphic is also onto.

We now state four propositions:

(11) Let S, T be non empty relational structures and f be a map from S into

T . If f is isomorphic, then f−1 is isomorphic.

(12) For all non empty relational structures S, T such that S and T are

isomorphic and S has g.l.b.’s holds T has g.l.b.’s.

(13) For all non empty relational structures S, T such that S and T are

isomorphic and S has l.u.b.’s holds T has l.u.b.’s.

(14) For every relational structure L such that L is empty holds L is bounded.

Let us note that every relational structure which is empty is also bounded.

The following propositions are true:

(15) Let S, T be relational structures. Suppose S and T are isomorphic and

S is lower-bounded. Then T is lower-bounded.

(16) Let S, T be relational structures. Suppose S and T are isomorphic and

S is upper-bounded. Then T is upper-bounded.

(17) Let S, T be non empty relational structures, A be a subset of S, and f

be a map from S into T . Suppose f is isomorphic and sup A exists in S.

Then sup f◦A exists in T .

(18) Let S, T be non empty relational structures, A be a subset of S, and f

be a map from S into T . Suppose f is isomorphic and inf A exists in S.

Then inf f◦A exists in T .

3. On the Product of Topological Spaces

Next we state two propositions:

(19) Let S, T be topological structures. Suppose S and T are homeomorphic

or there exists a map f from S into T such that dom f = ΩS and rng f =

ΩT . Then S is empty if and only if T is empty.

(20) For every non empty topological space T holds T and the topological

structure of T are homeomorphic.



16 jarosław gryko and artur korniłowicz

Let T be a Scott reflexive non empty FR-structure. One can verify that every

subset of T which is open is also inaccessible and upper and every subset of T

which is inaccessible and upper is also open.

Next we state several propositions:

(21) Let T be a topological structure, x, y be points of T , andX, Y be subsets

of T . If X = {x} and X ⊆ Y , then x ∈ Y .

(22) Let T be a topological structure, x, y be points of T , and Y , V be subsets

of T . If Y = {y} and x ∈ Y and V is open and x ∈ V, then y ∈ V.

(23) Let T be a topological structure, x, y be points of T , andX, Y be subsets

of T . Suppose X = {x} and Y = {y}. Suppose that for every subset V of

T such that V is open holds if x ∈ V, then y ∈ V. Then X ⊆ Y .

(24) Let S, T be non empty topological spaces, A be an irreducible subset of

S, and B be a subset of T . Suppose A = B and the topological structure

of S = the topological structure of T . Then B is irreducible.

(25) Let S, T be non empty topological spaces, a be a point of S, b be a point

of T , A be a subset of the carrier of S, and B be a subset of the carrier

of T . Suppose a = b and A = B and the topological structure of S = the

topological structure of T and a is dense point of A. Then b is dense point

of B.

(26) Let S, T be topological structures, A be a subset of S, and B be a subset

of T . Suppose A = B and the topological structure of S = the topological

structure of T and A is compact. Then B is compact.

(27) Let S, T be non empty topological spaces. Suppose the topological struc-

ture of S = the topological structure of T and S is sober. Then T is sober.

(28) Let S, T be non empty topological spaces. Suppose the topological struc-

ture of S = the topological structure of T and S is locally-compact. Then

T is locally-compact.

(29) Let S, T be topological structures. Suppose the topological structure of

S = the topological structure of T and S is compact. Then T is compact.

Let I be a non empty set, let T be a non empty topological space, let x be

a point of
∏

(I 7−→ T ), and let i be an element of I. Then x(i) is an element of

T .

The following propositions are true:

(30) Let M be a non empty set, J be a topological space yielding nonempty

many sorted set indexed by M , and x, y be points of
∏

J. Then x ∈ {y}

if and only if for every element i of M holds x(i) ∈ {y(i)}.

(31) Let M be a non empty set, T be a non empty topological space, and x,

y be points of
∏

(M 7−→ T ). Then x ∈ {y} if and only if for every element

i of M holds x(i) ∈ {y(i)}.

(32) Let M be a non empty set, i be an element of M , J be a topological
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space yielding nonempty many sorted set indexed byM , and x be a point

of
∏

J. Then πi{x} = {x(i)}.

(33) Let M be a non empty set, i be an element of M , T be a non empty

topological space, and x be a point of
∏

(M 7−→ T ). Then πi{x} = {x(i)}.

(34) Let X, Y be non empty topological structures, f be a map from X into

Y , and g be a map from Y into X. Suppose f = idX and g = idX and f is

continuous and g is continuous. Then the topological structure of X = the

topological structure of Y .

(35) Let X, Y be non empty topological spaces and f be a map from X into

Y . If f◦ is continuous, then f is continuous.

Let X, Y be non empty topological spaces. Observe that every continuous

map from X into Y is continuous.

Let X be a non empty topological space and let Y be a non empty subspace

of X. Note that Y
→֒
is continuous.

The following propositions are true:

(36) For every non empty topological space T and for every map f from T

into T such that f · f = f holds f◦ · ( Im f
→֒

) = idIm f .

(37) For every non empty topological space Y and for every non empty sub-

space W of Y holds (W
→֒

)◦ is a homeomorphism.

(38) Let M be a non empty set and J be a topological space yielding no-

nempty many sorted set indexed by M . Suppose that for every element i

of M holds J(i) is a T0 topological space. Then
∏

J is T0.

Let I be a non empty set and let T be a non empty T0 topological space.

One can check that
∏

(I 7−→ T ) is T0.

The following proposition is true

(39) Let M be a non empty set and J be a topological space yielding no-

nempty many sorted set indexed by M . Suppose that for every element i

of M holds J(i) is T1 and topological space-like. Then
∏

J is a T1 space.

Let I be a non empty set and let T be a non empty T1 topological space.

Observe that
∏

(I 7−→ T ) is T1.
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