
FORMALIZED MATHEMATICS

Volume 9, Number 1, 2001

University of Białystok

Injective Spaces. Part II1

Artur Korniłowicz

University of Białystok

Jarosław Gryko

University of Białystok

MML Identifier: WAYBEL25.

The notation and terminology used in this paper are introduced in the following

articles: [11], [8], [6], [1], [19], [23], [10], [17], [18], [24], [9], [26], [22], [14], [12],

[3], [7], [15], [4], [16], [2], [13], [25], [21], [20], and [5].

1. Injective Spaces

The following propositions are true:

(1) For every point p of the Sierpiński space such that p = 0 holds {p} is

closed.

(2) For every point p of the Sierpiński space such that p = 1 holds {p} is

non closed.

Let us note that the Sierpiński space is non T1.

One can check that every top-lattice which is complete and Scott is also

discernible.

Let us observe that there exists a T0-space which is injective and strict.

Let us observe that there exists a top-lattice which is complete, Scott, and

strict.

Next we state several propositions:

(3) Let I be a non empty set and T be a Scott topological augmentation

of
∏

(I 7−→ 21
⊆). Then the carrier of T = the carrier of

∏
(I 7−→ the

Sierpiński space).
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(4) Let L1, L2 be complete lattices, T1 be a Scott topological augmentation

of L1, T2 be a Scott topological augmentation of L2, h be a map from L1

into L2, and H be a map from T1 into T2. If h = H and h is isomorphic,

then H is a homeomorphism.

(5) Let L1, L2 be complete lattices, T1 be a Scott topological augmentation

of L1, and T2 be a Scott topological augmentation of L2. If L1 and L2 are

isomorphic, then T1 and T2 are homeomorphic.

(6) Let S, T be non empty topological spaces. If S is injective and S and T

are homeomorphic, then T is injective.

(7) Let L1, L2 be complete lattices, T1 be a Scott topological augmentation

of L1, and T2 be a Scott topological augmentation of L2. If L1 and L2 are

isomorphic and T1 is injective, then T2 is injective.

Let X, Y be non empty topological spaces. Let us observe that X is a

topological retract of Y if and only if:

(Def. 1) There exists a continuous map c from X into Y and there exists a con-

tinuous map r from Y into X such that r · c = idX .

One can prove the following propositions:

(8) Let S, T , X, Y be non empty topological spaces. Suppose that

(i) the topological structure of S = the topological structure of T ,

(ii) the topological structure of X = the topological structure of Y , and

(iii) S is a topological retract of X.

Then T is a topological retract of Y .

(9) Let T , S1, S2 be non empty topological structures. Suppose S1 and S2

are homeomorphic and S1 is a topological retract of T . Then S2 is a

topological retract of T .

(10) Let S, T be non empty topological spaces. Suppose T is injective and S

is a topological retract of T . Then S is injective.

(11) Let J be an injective non empty topological space and Y be a non empty

topological space. If J is a subspace of Y , then J is a topological retract

of Y .

(12) For every complete continuous lattice L holds every Scott topological

augmentation of L is injective.

Let L be a complete continuous lattice. Observe that every topological au-

gmentation of L which is Scott is also injective.

Let T be an injective non empty topological space. Note that the topological

structure of T is injective.
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2. Specialization Order

Let T be a topological structure. The functor ΩT yielding a strict FR-

structure is defined by the conditions (Def. 2).

(Def. 2)(i) The topological structure of ΩT = the topological structure of T , and

(ii) for all elements x, y of ΩT holds x ¬ y iff there exists a subset Y of T

such that Y = {y} and x ∈ Y .

Let T be an empty topological structure. Observe that ΩT is empty.

Let T be a non empty topological structure. Note that ΩT is non empty.

Let T be a topological space. Note that ΩT is topological space-like.

Let T be a topological structure. One can verify that ΩT is reflexive.

Let T be a topological structure. One can verify that ΩT is transitive.

Let T be a T0-space. One can verify that ΩT is antisymmetric.

One can prove the following propositions:

(13) Let S, T be topological spaces. Suppose the topological structure of

S = the topological structure of T . Then ΩS = ΩT.

(14) Let M be a non empty set and T be a non empty topological space.

Then the relational structure of Ω
∏

(M 7−→ T ) = the relational structure

of
∏

(M 7−→ ΩT ).

(15) For every Scott complete top-lattice S holds ΩS = the FR-structure of

S.

(16) Let L be a complete lattice and S be a Scott topological augmentation

of L. Then the relational structure of ΩS = the relational structure of L.

Let S be a Scott complete top-lattice. Note that ΩS is complete.

We now state four propositions:

(17) Let T be a non empty topological space and S be a non empty subspace

of T . Then ΩS is a full relational substructure of ΩT.

(18) Let S, T be topological spaces, h be a map from S into T , and g be

a map from ΩS into ΩT. If h = g and h is a homeomorphism, then g is

isomorphic.

(19) For all topological spaces S, T such that S and T are homeomorphic

holds ΩS and ΩT are isomorphic.

(20) For every injective T0-space T holds ΩT is a complete continuous lattice.

Let T be an injective T0-space. One can verify that ΩT is complete and

continuous.

We now state the proposition

(21) For all non empty topological spaces X, Y holds every continuous map

from ΩX into ΩY is monotone.
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Let X, Y be non empty topological spaces. Note that every map from ΩX

into ΩY which is continuous is also monotone.

Next we state the proposition

(22) For every non empty topological space T and for every element x of the

carrier of ΩT holds {x} = ↓x.

Let T be a non empty topological space and let x be an element of the carrier

of ΩT. One can verify that {x} is non empty lower and directed and ↓x is closed.

Next we state the proposition

(23) For every topological space X holds every open subset of ΩX is upper.

Let T be a topological space. One can verify that every subset of ΩT which

is open is also upper.

Let I be a non empty set, let S, T be non empty relational structures, let

N be a net in T , and let i be an element of I. Let us assume that the carrier of

T ⊆ the carrier of SI . The functor commute(N, i, S) yielding a strict net in S

is defined by the conditions (Def. 3).

(Def. 3)(i) The relational structure of commute(N, i, S) = the relational struc-

ture of N , and

(ii) the mapping of commute(N, i, S) = (commute(the mapping of N))(i).

Next we state two propositions:

(24) Let X, Y be non empty topological spaces, N be a net in [X → ΩY ],

i be an element of the carrier of N , and x be a point of X. Then (the

mapping of commute(N,x,ΩY ))(i) = (the mapping of N)(i)(x).

(25) Let X, Y be non empty topological spaces, N be an eventually-directed

net in [X → ΩY ], and x be a point of X. Then commute(N,x,ΩY ) is

eventually-directed.

Let X, Y be non empty topological spaces, let N be an eventually-directed

net in [X → ΩY ], and let x be a point ofX. One can verify that commute(N,x,ΩY )

is eventually-directed.

Let X, Y be non empty topological spaces. Observe that every net in [X →

ΩY ] is function yielding.

Next we state the proposition

(26) Let X be a non empty topological space, Y be a T0-space, and N be

a net in [X → ΩY ]. Suppose that for every point x of X holds sup

commute(N, x,ΩY ) exists. Then sup rng (the mapping of N) exists in

(ΩY )the carrier of X .
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3. Monotone Convergence Topological Spaces

Let T be a non empty topological space. We say that T is monotone conver-

gence if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let D be a non empty directed subset of ΩT. Then sup D exists in ΩT

and for every open subset V of T such that supD ∈ V holds D meets V .

One can prove the following proposition

(27) Let S, T be non empty topological spaces. Suppose the topological struc-

ture of S = the topological structure of T and S is monotone convergence.

Then T is monotone convergence.

Let us observe that every T0-space which is trivial is also monotone conver-

gence.

Let us observe that there exists a topological space which is strict, trivial,

and non empty.

One can prove the following two propositions:

(28) Let S be a monotone convergence T0-space and T be a T0-space. If S

and T are homeomorphic, then T is monotone convergence.

(29) Every Scott complete top-lattice is monotone convergence.

Let L be a complete lattice. One can check that every Scott topological

augmentation of L is monotone convergence.

Let L be a complete lattice and let S be a Scott topological augmentation of

L. One can check that the topological structure of S is monotone convergence.

We now state the proposition

(30) For every monotone convergence T0-space X holds ΩX is up-complete.

LetX be a monotone convergence T0-space. Observe that ΩX is up-complete.

One can prove the following three propositions:

(31) Let X be a monotone convergence non empty topological space and N

be an eventually-directed prenet over ΩX. Then sup N exists.

(32) Let X be a monotone convergence non empty topological space and N

be an eventually-directed net in ΩX. Then supN ∈ LimN.

(33) For every monotone convergence non empty topological space X holds

every eventually-directed net in ΩX is convergent.

Let X be a monotone convergence non empty topological space. Observe

that every eventually-directed net in ΩX is convergent.

We now state two propositions:

(34) Let X be a non empty topological space. Suppose that for every

eventually-directed net N in ΩX holds sup N exists and supN ∈ LimN.

Then X is monotone convergence.
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(35) Let X be a monotone convergence non empty topological space and Y

be a T0-space. Then every continuous map from ΩX into ΩY is directed-

sups-preserving.

Let X be a monotone convergence non empty topological space and let Y be

a T0-space. One can check that every map from ΩX into ΩY which is continuous

is also directed-sups-preserving.

Next we state four propositions:

(36) Let T be a monotone convergence T0-space and R be a T0-space. If R is

a topological retract of T , then R is monotone convergence.

(37) Let T be an injective T0-space and S be a Scott topological augmentation

of ΩT. Then the topological structure of S = the topological structure of

T .

(38) Every injective T0-space is compact, locally-compact, and sober.

(39) Every injective T0-space is monotone convergence.

One can verify that every T0-space which is injective is also monotone co-

nvergence.

One can prove the following propositions:

(40) Let X be a non empty topological space, Y be a monotone convergence

T0-space, N be a net in [X → ΩY ], and f , g be maps from X into ΩY.

Suppose that

(i) f =
⊔

((ΩY )the carrier of X) rng (the mapping of N),

(ii) sup rng (the mapping of N) exists in (ΩY )the carrier of X , and

(iii) g ∈ rng (the mapping of N).

Then g ¬ f.

(41) Let X be a non empty topological space, Y be a monotone convergence

T0-space, N be a net in [X → ΩY ], x be a point of X, and f be a map

from X into ΩY. Suppose for every point a of X holds commute(N, a,ΩY )

is eventually-directed and f =
⊔

((ΩY )the carrier of X) rng (the mapping of N).

Then f(x) = sup commute(N,x,ΩY ).

(42) Let X be a non empty topological space, Y be a monotone conver-

gence T0-space, and N be a net in [X → ΩY ]. Suppose that for

every point x of X holds commute(N, x,ΩY ) is eventually-directed. Then
⊔

((ΩY )the carrier of X) rng (the mapping of N) is a continuous map from X

into Y .

(43) Let X be a non empty topological space and Y be a monotone conver-

gence T0-space. Then [X → ΩY ] is a directed-sups-inheriting relational

substructure of (ΩY )the carrier of X .
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