
FORMALIZED MATHEMATICS

Volume 9, Number 1, 2001

University of Białystok

Recursive Euclide Algorithm 1

Jing-Chao Chen

Shanghai Jiaotong University

Summary. The earlier SCM computer did not contain recursive function,
so Trybulec and Nakamura proved the correctness of the Euclid’s algorithm only

by way of an iterative program. However, the recursive method is a very im-

portant programming method, furthermore, for some algorithms, for example

Quicksort, only by employing a recursive method (note push-down stack is es-

sentially also a recursive method) can they be implemented. The main goal of

the article is to test the recursive function of the SCMPDS computer by proving

the correctness of the Euclid’s algorithm by way of a recursive program. In this

article, we observed that the memory required by the recursive Euclide algori-

thm is variable but it is still autonomic. Although the algorithm here is more

complicated than the non-recursive algorithm, its focus is that the SCMPDS

computer will be able to implement many algorithms like Quicksort which the

SCM computer cannot do.

MML Identifier: SCMP GCD.

The articles [12], [14], [1], [3], [5], [4], [16], [15], [11], [2], [10], [18], [9], [8], [6],

[7], [17], and [13] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: m, n denote natural numbers, i, j

denote instructions of SCMPDS, s denotes a state of SCMPDS, and I, J denote

Program-block.

One can prove the following three propositions:

(1) If m > 0, then gcd(n,m) = gcd(m,nmodm).

(2) For all integers i, j such that i ­ 0 and j > 0 holds i gcd j = j gcd imodj.

1This research is partially supported by the National Natural Science Foundation of China

Grant No. 69873033.

1
c© 2001 University of Białystok

ISSN 1426–2630

2 jing-chao chen

(3) For every natural numberm and for every integer j such that insposm =

j holds insposm + 2 = 2 · (|j| ÷ 2) + 4.

Let k be a natural number. The functor intposk yields a Int position and is

defined as follows:

(Def. 1) intpos k = dk.

Next we state three propositions:

(4) For all natural numbers n1, n2 such that n1 6= n2 holds intposn1 6=

intposn2.

(5) For all natural numbers n1, n2 holds DataLoc(n1, n2) = intposn1 + n2.

(6) For every state s of SCMPDS and for all natural numbers m1, m2 such

that ICs = insposm1 + m2 holds ICplusConst(s,−m2) = insposm1.

The Int position GBP is defined by:

(Def. 2) GBP = intpos 0.

The Int position SBP is defined as follows:

(Def. 3) SBP = intpos 1.

The following propositions are true:

(7) GBP 6= SBP .

(8) card(I;i) = card I + 1.

(9) card(i;j) = 2.

(10) (I;i)(inspos card I) = i and inspos card I ∈ dom(I;i).

(11) (I;i;J)(inspos card I) = i.

2. The Construction of Recursive Euclide Algorithm

The Program-block GCD−Algorithm is defined by:

(Def. 4) GCD−Algorithm = (GBP :=0);(SBP :=7); saveIC(SBP,RetIC);goto 2;

haltSCMPDS;((SBP, 3) <= 0 goto9);((SBP, 6) := (SBP, 3));

Divide(SBP, 2,SBP, 3);((SBP, 7) := (SBP, 3));((SBP, 4 + RetSP) :=

(GBP, 1));AddTo(GBP, 1, 4); saveIC(SBP,RetIC);goto (−7);((SBP, 2) :=

(SBP, 6)); return SBP .

3. The Computation of Recursive Euclide Algorithm

One can prove the following propositions:

(12) cardGCD−Algorithm = 15.

(13) n < 15 iff insposn ∈ domGCD−Algorithm .

recursive euclide algorithm 3

(14) (GCD−Algorithm)(inspos 0) = GBP :=0 and (GCD−Algorithm)

(inspos 1) = SBP :=7 and (GCD−Algorithm)(inspos 2) = saveIC(SBP,

RetIC) and (GCD−Algorithm)(inspos 3) = goto 2 and (GCD−Algorithm)

(inspos 4) = haltSCMPDS and (GCD−Algorithm)(inspos 5) =

(SBP, 3) <= 0 goto9 and (GCD−Algorithm)(inspos 6) = (SBP, 6) :=

(SBP, 3) and (GCD−Algorithm)(inspos 7) = Divide(SBP, 2,SBP, 3)

and (GCD−Algorithm)(inspos 8) = (SBP, 7) := (SBP, 3) and

(GCD−Algorithm)(inspos 9) = (SBP, 4 + RetSP) := (GBP, 1) and

(GCD−Algorithm)(inspos 10) = AddTo(GBP, 1, 4) and (GCD−Algorithm)

(inspos 11) = saveIC(SBP,RetIC) and (GCD−Algorithm)(inspos 12) =

goto (−7) and (GCD−Algorithm)(inspos 13) = (SBP, 2) := (SBP, 6) and

(GCD−Algorithm)(inspos 14) = return SBP .

(15) Let s be a state of SCMPDS. Suppose Initialized(GCD−Algorithm) ⊆

s. Then IC(Computation(s))(4) = inspos 5 and (Computation(s))(4)(GBP) =

0 and (Computation(s))(4)(SBP) = 7 and (Computation(s))(4)(intpos 7+

RetIC) = inspos 2 and (Computation(s))(4)(intpos 9) = s(intpos 9) and

(Computation(s))(4)(intpos 10) = s(intpos 10).

(16) Let s be a state of SCMPDS. Suppose GCD−Algorithm ⊆ s and ICs =

inspos 5 and s(SBP) > 0 and s(GBP) = 0 and s(DataLoc(s(SBP), 3)) ­ 0

and s(DataLoc(s(SBP), 2)) ­ s(DataLoc(s(SBP), 3)). Then there exists n

such that

(i) CurInstr((Computation(s))(n)) = return SBP,

(ii) s(SBP) = (Computation(s))(n)(SBP),

(iii) (Computation(s))(n)(DataLoc(s(SBP), 2)) = s(DataLoc(s(SBP), 2))

gcd s(DataLoc(s(SBP), 3)), and

(iv) for every natural number j such that 1 < j and j ¬ s(SBP) + 1 holds

s(intpos j) = (Computation(s))(n)(intpos j).

(17) Let s be a state of SCMPDS. Suppose GCD−Algorithm ⊆ s and ICs =

inspos 5 and s(SBP) > 0 and s(GBP) = 0 and s(DataLoc(s(SBP), 3)) ­ 0

and s(DataLoc(s(SBP), 2)) ­ 0. Then there exists n such that

(i) CurInstr((Computation(s))(n)) = return SBP,

(ii) s(SBP) = (Computation(s))(n)(SBP),

(iii) (Computation(s))(n)(DataLoc(s(SBP), 2)) = s(DataLoc(s(SBP), 2))

gcd s(DataLoc(s(SBP), 3)), and

(iv) for every natural number j such that 1 < j and j ¬ s(SBP) + 1 holds

s(intpos j) = (Computation(s))(n)(intpos j).

4 jing-chao chen

4. The Correctness of Recursive Euclide Algorithm

The following proposition is true

(18) Let s be a state of SCMPDS. Suppose Initialized(GCD−Algorithm) ⊆

s. Let x, y be integers. If s(intpos 9) = x and s(intpos 10) = y and x ­ 0

and y ­ 0, then (Result(s))(intpos 9) = x gcd y.

5. The Autonomy of Recursive Euclide Algorithm

We now state the proposition

(19) Let p be a finite partial state of SCMPDS and x, y be integers. If

y ­ 0 and x ­ y and p = [intpos 9 7−→ x, intpos 10 7−→ y], then

Initialized(GCD−Algorithm)+·p is autonomic.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[5] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics,
2(5):701–709, 1991.

[6] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized
Mathematics, 8(1):193–199, 1999.

[7] Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.
Formalized Mathematics, 8(1):201–210, 1999.

[8] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183–191, 1999.

[9] Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathema-
tics, 8(1):175–182, 1999.

[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[11] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes.
Formalized Mathematics, 1(5):829–832, 1990.

[12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[14] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[15] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[16] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received June 15, 1999

