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Summary. The goal of this article is to define multivariate polynomials
in arbitrary number of indeterminates and then to prove that they constitute a
ring (over appropriate structure of coefficients).
The introductory section includes quite a number of auxiliary lemmas related

to many different parts of the MML. The second section characterizes the sequ-
ence flattening operation, introduced in [7], but so far lacking theorems about its
fundamental properties.
We first define formal power series in arbitrary number of variables. The

auxiliary concept on which the construction of formal power series is based is the
notion of a bag. A bag of a set X is a natural function on X which is zero almost
everywhere. The elements of X play the role of formal variables and a bag gives
their exponents thus forming a power product. Series are defined for an ordered
set of variables (we use ordinal numbers). A series in o variables over a structure
S is a function assigning an element of the carrier of S (coefficient) to each bag
of o.
We define the operations of addition, complement and multiplication for for-

mal power series and prove their properties which depend on assumed properties
of the structure from which the coefficients are taken. (We would like to note that
proving associativity of multiplication turned out to be technically complicated.)
Polynomial is defined as a formal power series with finite number of non zero

coefficients. In conclusion, the ring of polynomials is defined.

MML Identifier: POLYNOM1.

The terminology and notation used in this paper are introduced in the following

articles: [24], [23], [10], [35], [1], [3], [7], [6], [11], [31], [15], [25], [12], [13], [8],

1This work has been supported by NSERC Grant OGP9207 and NATO CRG 951368.
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[38], [29], [22], [5], [18], [2], [30], [33], [4], [28], [9], [36], [37], [32], [19], [26], [34],

[27], [16], [21], [20], [17], and [14].

1. Basics

The following propositions are true:

(1) For all natural numbers i, j holds ·N(i, j) = i · j.

(2) Let X be a set, A be a non empty set, F be a binary operation on

A, f be a function from X into A, and x be an element of A. Then

dom(F ◦(f, x)) = X.

(3) For all natural numbers a, b, c holds a−′ b−′ c = a−′ (b + c).

(4) For every set X and for every binary relation R such that fieldR ⊆ X

holds R is a binary relation on X.

(5) Let K be a non empty loop structure and p1, p2 be finite sequences of

elements of the carrier of K. If dom p1 = dom p2, then dom(p1 + p2) =

dom p1.

(6) For every function f and for all sets x, y holds rng(f +· (x, y)) ⊆ rng f ∪

{y}.

Let A, B be sets, let f be a function from A into B, let x be a set, and let

y be an element of B. Then f +· (x, y) is a function from A into B.

Let X be a set, let f be a many sorted set indexed by X, and let x, y be

sets. Then f +· (x, y) is a many sorted set indexed by X.

Next we state the proposition

(7) For every one-to-one function f holds (f qua set) = rng f .

Let A be a non empty set, let F , G be binary operations on A, and let z, u

be elements of A. Observe that 〈A,F,G, z, u〉 is non empty.

Let A be a set, let X be a set, let D be a non empty set of finite sequences

of A, let p be a partial function from X to D, and let i be a set. Then πip is an

element of D.

Let X be a set and let S be a 1-sorted structure.

(Def. 1) A function from X into the carrier of S is said to be a function from X

into S.

Let X be a set. Note that there exists an order in X which is linear-order

and well-ordering.

The following propositions are true:

(8) Let X be a non empty set, A be a non empty finite subset of X, R be

an order in X, and x be an element of X. Suppose x ∈ A and R linearly

orders A and for every element y of X such that y ∈ A holds 〈〈x, y〉〉 ∈ R.

Then π1 SgmX(R, A) = x.
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(9) Let X be a non empty set, A be a non empty finite subset of X, R be

an order in X, and x be an element of X. Suppose x ∈ A and R linearly

orders A and for every element y of X such that y ∈ A holds 〈〈y, x〉〉 ∈ R.

Then πlen SgmX(R,A) SgmX(R, A) = x.

Let X be a non empty set, let A be a non empty finite subset of X, and

let R be linear-order order in X. One can verify that SgmX(R,A) is non empty

and one-to-one.

Let us observe that ∅ is finite sequence yielding.

Let us observe that there exists a finite sequence which is finite sequence

yielding.

Let F , G be finite sequence yielding finite sequences. Then F ⌢ G is a finite

sequence yielding finite sequence.

Let D be a set. Note that every finite sequence of elements of D∗ is finite

sequence yielding.

Let i be a natural number and let f be a finite sequence. Note that i 7→ f is

finite sequence yielding.

Let us observe that every function which is finite sequence yielding is also

function yielding.

Let F be a finite sequence yielding finite sequence and let x be a set. Note

that F (x) is finite sequence-like.

Let F be a finite sequence. Observe that F is finite sequence-like.

Let us observe that there exists a finite sequence which is cardinal yielding.

We now state the proposition

(10) Let f be a function. Then f is cardinal yielding if and only if for every

set y such that y ∈ rng f holds y is a cardinal number.

Let F , G be cardinal yielding finite sequences. Note that F a G is cardinal

yielding.

Let us note that every finite sequence of elements of N is cardinal yielding.

Let us observe that there exists a finite sequence of elements of N which is

cardinal yielding.

Let D be a set and let F be a finite sequence of elements of D∗. Then F is

a cardinal yielding finite sequence of elements of N.

Let F be a finite sequence of elements of N and let i be a natural number.

Observe that F ↾i is cardinal yielding.

We now state the proposition

(11) For every function F and for every set X holds F ↾X = F ↾X.

Let F be an empty function. One can verify that F is empty.

Next we state two propositions:

(12) For every set p holds 〈p〉 = 〈p〉.

(13) For all finite sequences F , G holds F a G = F a G.
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Let X be a set. Note that εX is finite sequence yielding.

Let f be a finite sequence. Observe that 〈f〉 is finite sequence yielding.

One can prove the following proposition

(14) Let f be a function. Then f is finite sequence yielding if and only if for

every set y such that y ∈ rng f holds y is a finite sequence.

Let F , G be finite sequence yielding finite sequences. One can verify that

F a G is finite sequence yielding.

Next we state four propositions:

(15) Let L be a non empty loop structure and F be a finite sequence of

elements of (the carrier of L)∗. Then dom
∑

F = domF.

(16) Let L be a non empty loop structure and F be a finite sequence of ele-

ments of (the carrier of L)∗. Then
∑

(ε(the carrier of L)∗) = ε(the carrier of L).

(17) For every non empty loop structure L and for every element p of

(the carrier of L)∗ holds 〈
∑

p〉 =
∑
〈p〉.

(18) Let L be a non empty loop structure and F , G be finite sequences of

elements of (the carrier of L)∗. Then
∑

(F a G) = (
∑

F ) a

∑
G.

Let L be a non empty groupoid, let a be an element of the carrier of L,

and let p be a finite sequence of elements of the carrier of L. The functor a · p

yielding a finite sequence of elements of the carrier of L is defined by:

(Def. 2) dom(a·p) = dom p and for every set i such that i ∈ dom p holds πi(a·p) =

a · πip.

The functor p · a yielding a finite sequence of elements of the carrier of L is

defined as follows:

(Def. 3) dom(p·a) = dom p and for every set i such that i ∈ dom p holds πi(p·a) =

πip · a.

The following propositions are true:

(19) Let L be a non empty groupoid and a be an element of the carrier of L.

Then a · ε(the carrier of L) = ε(the carrier of L).

(20) Let L be a non empty groupoid and a be an element of the carrier of L.

Then ε(the carrier of L) · a = ε(the carrier of L).

(21) For every non empty groupoid L and for all elements a, b of the carrier

of L holds a · 〈b〉 = 〈a · b〉.

(22) For every non empty groupoid L and for all elements a, b of the carrier

of L holds 〈b〉 · a = 〈b · a〉.

(23) Let L be a non empty groupoid, a be an element of the carrier of L, and

p, q be finite sequences of elements of the carrier of L. Then a · (p a q) =

(a · p) a (a · q).

(24) Let L be a non empty groupoid, a be an element of the carrier of L, and

p, q be finite sequences of elements of the carrier of L. Then (p a q) · a =
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(p · a) a (q · a).

We now state two propositions:

(25) Let L be an add-associative right zeroed right complementable left-

distributive non empty double loop structure and x be an element of the

carrier of L. Then 0L · x = 0L.

(26) Let L be an add-associative right zeroed right complementable right-

distributive non empty double loop structure and x be an element of the

carrier of L. Then x · 0L = 0L.

One can verify that every non empty multiplicative loop with zero structure

which is non degenerated is also non trivial.

Let us mention that there exists a non empty strict multiplicative loop with

zero structure which is unital.

Let us observe that there exists a non empty strict double loop structure

which is Abelian, add-associative, right zeroed, right complementable, associa-

tive, commutative, distributive, unital, and non trivial.

Next we state three propositions:

(27) Let L be an add-associative right zeroed right complementable unital

right-distributive non empty double loop structure. If 0L = 1L, then L is

trivial.

(28) Let L be an add-associative right zeroed right complementable unital

distributive non empty double loop structure, a be an element of the carrier

of L, and p be a finite sequence of elements of the carrier of L. Then
∑

(a · p) = a ·
∑

p.

(29) Let L be an add-associative right zeroed right complementable unital

distributive non empty double loop structure, a be an element of the carrier

of L, and p be a finite sequence of elements of the carrier of L. Then
∑

(p · a) =
∑

p · a.

2. Sequence Flattening

Let D be a set and let F be an empty finite sequence of elements of D∗.

Observe that Flat(F ) is empty.

One can prove the following propositions:

(30) For every set D and for every finite sequence F of elements of D∗ holds

lenFlat(F ) =
∑

F .

(31) Let D, E be sets, F be a finite sequence of elements of D∗, and G

be a finite sequence of elements of E∗. If F = G, then lenFlat(F ) =

lenFlat(G).
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(32) Let D be a set, F be a finite sequence of elements of D∗, and k be

a set. Suppose k ∈ domFlat(F ). Then there exist natural numbers i, j

such that i ∈ domF and j ∈ domF (i) and k =
∑

F ↾(i−′ 1) + j and

F (i)(j) = Flat(F )(k).

(33) Let D be a set, F be a finite sequence of elements of D∗, and i, j be

natural numbers. If i ∈ domF and j ∈ domF (i), then
∑

F ↾(i−′ 1) + j ∈

domFlat(F ) and F (i)(j) = Flat(F )(
∑

F ↾(i−′ 1) + j).

(34) Let L be an add-associative right zeroed right complementable non

empty loop structure and F be a finite sequence of elements of

(the carrier of L)∗. Then
∑
Flat(F ) =

∑∑
F.

(35) Let X, Y be non empty sets, f be a finite sequence of elements of X∗,

and v be a function from X into Y . Then (dom f 7−→ v) ◦ f is a finite

sequence of elements of Y ∗.

(36) Let X, Y be non empty sets, f be a finite sequence of elements of X∗,

and v be a function fromX into Y . Then there exists a finite sequence F of

elements of Y ∗ such that F = (dom f 7−→ v)◦f and v ·Flat(f) = Flat(F ).

3. Functions Yielding Natural Numbers

Let us note that ∅ is natural-yielding.

One can check that there exists a function which is natural-yielding.

Let f be a natural-yielding function and let x be a set. Then f(x) is a natural

number.

Let f be a natural-yielding function, let x be a set, and let n be a natural

number. Observe that f +· (x, n) is natural-yielding.

Let X be a set. One can check that every function from X into N is natural-

yielding.

Let X be a set. Observe that there exists a many sorted set indexed by X

which is natural-yielding.

Let X be a set and let b1, b2 be natural-yielding many sorted sets indexed

by X. The functor b1 + b2 yields a many sorted set indexed by X and is defined

as follows:

(Def. 5)2 For every set x holds (b1 + b2)(x) = b1(x) + b2(x).

Let us note that the functor b1 + b2 is commutative. The functor b1 −
′ b2 yields

a many sorted set indexed by X and is defined by:

(Def. 6) For every set x holds (b1 −
′ b2)(x) = b1(x)−′ b2(x).

Next we state two propositions:

2The definition (Def. 4) has been removed.
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(37) Let X be a set and b, b1, b2 be natural-yielding many sorted sets indexed

by X. If for every set x such that x ∈ X holds b(x) = b1(x) + b2(x), then

b = b1 + b2.

(38) Let X be a set and b, b1, b2 be natural-yielding many sorted sets indexed

by X. If for every set x such that x ∈ X holds b(x) = b1(x)−′ b2(x), then

b = b1 −
′ b2.

Let X be a set and let b1, b2 be natural-yielding many sorted sets indexed

by X. Observe that b1 + b2 is natural-yielding and b1 −
′ b2 is natural-yielding.

The following two propositions are true:

(39) For every set X and for all natural-yielding many sorted sets b1, b2, b3

indexed by X holds (b1 + b2) + b3 = b1 + (b2 + b3).

(40) For every set X and for all natural-yielding many sorted sets b, c, d

indexed by X holds b−′ c−′ d = b−′ (c + d).

4. The Support of a Function

Let f be a function. The functor support f is defined as follows:

(Def. 7) For every set x holds x ∈ support f iff f(x) 6= 0.

One can prove the following proposition

(41) For every function f holds support f ⊆ dom f.

Let f be a function. We say that f is finite-support if and only if:

(Def. 8) support f is finite.

We introduce f has finite-support as a synonym of f is finite-support.

Let us mention that ∅ is finite-support.

Let us note that every function which is finite is also finite-support.

Let us observe that there exists a function which is natural-yielding, finite-

support, and non empty.

Let f be a finite-support function. Observe that support f is finite.

Let X be a set. Note that there exists a function from X into N which is

finite-support.

Let f be a finite-support function and let x, y be sets. Observe that f+·(x, y)

is finite-support.

Let X be a set. One can verify that there exists a many sorted set indexed

by X which is natural-yielding and finite-support.

One can prove the following propositions:

(42) For every set X and for all natural-yielding many sorted sets b1, b2

indexed by X holds support(b1 + b2) = support b1 ∪ support b2.

(43) For every set X and for all natural-yielding many sorted sets b1, b2

indexed by X holds support(b1 −
′ b2) ⊆ support b1.
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Let X be a non empty set, let S be a zero structure, and let f be a function

from X into S. The functor Support f yielding a subset of X is defined by:

(Def. 9) For every element x of X holds x ∈ Support f iff f(x) 6= 0S .

Let X be a non empty set, let S be a zero structure, and let p be a function

from X into S. We say that p is finite-Support if and only if:

(Def. 10) Support p is finite.

We introduce p has finite-Support as a synonym of p is finite-Support.

5. Bags

Let X be a set. A bag of X is a natural-yielding finite-support many sorted

set indexed by X.

Let X be a finite set. Observe that every many sorted set indexed by X is

finite-support.

Let X be a set and let b1, b2 be bag of X. Note that b1 + b2 is finite-support

and b1 −
′ b2 is finite-support.

The following proposition is true

(44) For every set X holds X 7−→ 0 is a bag of X.

Let n be an ordinal number and let p, q be bag of n. The predicate p < q is

defined as follows:

(Def. 11) There exists an ordinal number k such that p(k) < q(k) and for every

ordinal number l such that l ∈ k holds p(l) = q(l).

Let us note that the predicate p < q is antisymmetric.

Next we state the proposition

(45) For every ordinal number n and for all bag p, q, r of n such that p < q

and q < r holds p < r.

Let n be an ordinal number and let p, q be bag of n. The predicate p ¬ q is

defined as follows:

(Def. 12) p < q or p = q.

Let us note that the predicate p ¬ q is reflexive.

The following propositions are true:

(46) For every ordinal number n and for all bag p, q, r of n such that p ¬ q

and q ¬ r holds p ¬ r.

(47) For every ordinal number n and for all bag p, q, r of n such that p < q

and q ¬ r holds p < r.

(48) For every ordinal number n and for all bag p, q, r of n such that p ¬ q

and q < r holds p < r.

(49) For every ordinal number n and for all bag p, q of n holds p ¬ q or q ¬ p.
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Let X be a set and let d, b be bag of X. We say that d divides b if and only

if:

(Def. 13) For every set k holds d(k) ¬ b(k).

Let us note that the predicate d divides b is reflexive.

One can prove the following propositions:

(50) For every set n and for all bag d, b of n such that for every set k such

that k ∈ n holds d(k) ¬ b(k) holds d divides b.

(51) For every ordinal number n and for all bag b1, b2 of n such that b1 divides

b2 holds (b2 −
′ b1) + b1 = b2.

(52) For every set X and for all bag b1, b2 of X holds (b2 + b1)−
′ b1 = b2.

(53) For every ordinal number n and for all bag d, b of n such that d divides

b holds d ¬ b.

(54) For every set n and for all bag b, b1, b2 of n such that b = b1 + b2 holds

b1 divides b.

Let X be a set. The functor BagsX is defined as follows:

(Def. 14) For every set x holds x ∈ BagsX iff x is a bag of X.

Let X be a set. Then BagsX is a subset of BagsX.

One can prove the following proposition

(55) Bags ∅ = {∅}.

Let X be a set. Note that BagsX is non empty.

Let X be a set and let B be a non empty subset of BagsX. We see that the

element of B is a bag of X.

Let n be a set, let L be a non empty 1-sorted structure, let p be a function

from Bagsn into L, and let x be a bag of n. Then p(x) is an element of L.

Let X be a set. The functor EmptyBagX yielding an element of BagsX is

defined by:

(Def. 15) EmptyBagX = X 7−→ 0.

The following propositions are true:

(56) For all sets X, x holds (EmptyBagX)(x) = 0.

(57) For every set X and for every bag b of X holds b + EmptyBagX = b.

(58) For every set X and for every bag b of X holds b−′ EmptyBagX = b.

(59) For every set X and for every bag b of X holds EmptyBagX −′ b =

EmptyBagX.

(60) For every set X and for every bag b of X holds b−′ b = EmptyBagX.

(61) For every set n and for all bag b1, b2 of n such that b1 divides b2 and

b2 −
′ b1 = EmptyBagn holds b2 = b1.

(62) For every set n and for every bag b of n such that b divides EmptyBagn

holds EmptyBagn = b.

(63) For every set n and for every bag b of n holds EmptyBagn divides b.
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(64) For every ordinal number n and for every bag b of n holds EmptyBagn ¬

b.

Let n be an ordinal number. The functor BagOrdern yields an order in

Bagsn and is defined as follows:

(Def. 16) For all bag p, q of n holds 〈〈p, q〉〉 ∈ BagOrdern iff p ¬ q.

Let n be an ordinal number. Note that BagOrdern is linear-order.

LetX be a set and let f be a function fromX into N. The functor NatMinor f

yielding a subset of NX is defined by the condition (Def. 17).

(Def. 17) Let g be a natural-yielding many sorted set indexed by X. Then g ∈

NatMinor f if and only if for every set x such that x ∈ X holds g(x) ¬

f(x).

Next we state the proposition

(65) For every set X and for every function f from X into N holds f ∈

NatMinor f.

Let X be a set and let f be a function from X into N. Observe that

NatMinor f is non empty and functional.

Let X be a set and let f be a function from X into N. One can verify that

every element of NatMinor f is natural-yielding.

The following proposition is true

(66) For every set X and for every finite-support function f from X into N

holds NatMinor f ⊆ BagsX.

Let X be a set and let f be a finite-support function from X into N. Then

support f is an element of FinX.

The following proposition is true

(67) For every non empty set X and for every finite-support function f from

X into N holds NatMinor f = ·N-
∑
support f (+N)◦(f, 1).

Let X be a set and let f be a finite-support function from X into N. One

can verify that NatMinor f is finite.

Let n be an ordinal number and let b be a bag of n. The functor divisors b

yields a finite sequence of elements of Bagsn and is defined by the condition

(Def. 18).

(Def. 18) There exists a non empty finite subset S of Bagsn such that divisors b =

SgmX(BagOrdern, S) and for every bag p of n holds p ∈ S iff p divides b.

Let n be an ordinal number and let b be a bag of n. One can check that

divisors b is non empty and one-to-one.

The following four propositions are true:

(68) Let n be an ordinal number, i be a natural number, and b be a bag of n.

If i ∈ domdivisors b, then πi divisors b qua element of Bagsn divides b.
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(69) For every ordinal number n and for every bag b of n holds π1 divisors b =

EmptyBagn and πlen divisors b divisors b = b.

(70) Let n be an ordinal number, i be a natural number, and b, b1, b2 be bag

of n. If i > 1 and i < len divisors b, then πi divisors b 6= EmptyBagn and

πi divisors b 6= b.

(71) For every ordinal number n holds divisors EmptyBagn = 〈EmptyBagn〉.

Let n be an ordinal number and let b be a bag of n. The functor decomp b

yields a finite sequence of elements of (Bagsn)2 and is defined as follows:

(Def. 19) domdecomp b = domdivisors b and for every natural number i and for

every bag p of n such that i ∈ domdecomp b and p = πi divisors b holds

πi decomp b = 〈p, b−′ p〉.

One can prove the following propositions:

(72) Let n be an ordinal number, i be a natural number, and b be a bag

of n. If i ∈ domdecomp b, then there exist bag b1, b2 of n such that

πi decomp b = 〈b1, b2〉 and b = b1 + b2.

(73) Let n be an ordinal number and b, b1, b2 be bag of n. If b = b1 + b2,

then there exists a natural number i such that i ∈ domdecomp b and

πi decomp b = 〈b1, b2〉.

(74) Let n be an ordinal number, i be a natural number, and b, b1, b2 be bag of

n. If i ∈ domdecomp b and πi decomp b = 〈b1, b2〉, then b1 = πi divisors b.

Let n be an ordinal number and let b be a bag of n. Note that decomp b is

non empty one-to-one and finite sequence yielding.

Let n be an ordinal number and let b be an element of Bagsn. One can verify

that decomp b is non empty one-to-one and finite sequence yielding.

Next we state four propositions:

(75) For every ordinal number n and for every bag b of n holds π1 decomp b =

〈EmptyBagn, b〉 and πlen decomp b decomp b = 〈b,EmptyBagn〉.

(76) Let n be an ordinal number, i be a natural number, and b, b1, b2 be

bag of n. If i > 1 and i < len decomp b and πi decomp b = 〈b1, b2〉, then

b1 6= EmptyBagn and b2 6= EmptyBagn.

(77) For every ordinal number n holds decompEmptyBagn = 〈〈EmptyBagn,

EmptyBagn〉〉.

(78) Let n be an ordinal number, b be a bag of n, and f , g be finite sequences

of elements of ((Bagsn)3)∗. Suppose that

(i) dom f = domdecomp b,

(ii) dom g = domdecomp b,

(iii) for every natural number k such that k ∈ dom f holds f(k) =

(decomp(π1πk decomp b qua element of Bagsn))⌢(len decomp(π1πk decomp

b qua element of Bagsn) 7→ 〈π2πk decomp b〉), and
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(iv) for every natural number k such that k ∈ dom g holds g(k) =

(len decomp(π2πk decomp b qua element of Bagsn) 7→ 〈π1πk decomp b〉) ⌢

decomp(π2πk decomp b qua element of Bagsn).

Then there exists a permutation p of domFlat(f) such that Flat(g) =

Flat(f) · p.

6. Formal Power Series

Let X be a set and let S be a 1-sorted structure.

(Def. 20) A function from BagsX into S is said to be a Series of X, S.

Let n be a set, let L be a right zeroed non empty loop structure, and let

p, q be Series of n, L. The functor p + q yielding a Series of n, L is defined as

follows:

(Def. 21) For every bag x of n holds (p + q)(x) = p(x) + q(x).

One can prove the following proposition

(79) Let n be a set, L be a right zeroed non empty loop structure, and p, q

be Series of n, L. Then Support p + q ⊆ Support p ∪ Support q.

Let n be a set, let L be an Abelian right zeroed non empty loop structure,

and let p, q be Series of n, L. Let us notice that the functor p+q is commutative.

Next we state the proposition

(80) Let n be a set, L be an add-associative right zeroed non empty double

loop structure, and p, q, r be Series of n, L. Then (p+ q)+ r = p+(q + r).

Let n be a set, let L be an add-associative right zeroed right complementable

non empty loop structure, and let p be a Series of n, L. The functor −p yields

a Series of n, L and is defined by:

(Def. 22) For every bag x of n holds (−p)(x) = −p(x).

Let n be a set, let L be an add-associative right zeroed right complementable

non empty loop structure, and let p, q be Series of n, L. The functor p−q yields

a Series of n, L and is defined by:

(Def. 23) p− q = p +−q.

Let n be a set and let S be a non empty zero structure. The functor 0 (n, S)

yields a Series of n, S and is defined by:

(Def. 24) 0 (n, S) = Bagsn 7−→ 0S .

One can prove the following propositions:

(81) For every set n and for every non empty zero structure S and for every

bag b of n holds (0 (n, S))(b) = 0S .

(82) For every set n and for every right zeroed non empty loop structure L

and for every Series p of n, L holds p + 0 (n,L) = p.
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Let n be a set and let L be a unital non empty multiplicative loop with zero

structure. The functor 1 (n,L) yielding a Series of n, L is defined as follows:

(Def. 25) 1 (n, L) = 0 (n,L) +· (EmptyBagn, 1L).

We now state two propositions:

(83) Let n be a set, L be an add-associative right zeroed right complementable

non empty loop structure, and p be a Series of n, L. Then p−p = 0 (n,L).

(84) Let n be a set and L be a unital non empty multiplicative loop with

zero structure. Then (1 (n, L))(EmptyBagn) = 1L and for every bag b of

n such that b 6= EmptyBagn holds (1 (n, L))(b) = 0L.

Let n be an ordinal number, let L be an add-associative right complemen-

table right zeroed non empty double loop structure, and let p, q be Series of

n, L. The functor p ∗ q yields a Series of n, L and is defined by the condition

(Def. 26).

(Def. 26) Let b be a bag of n. Then there exists a finite sequence s of elements of

the carrier of L such that

(i) (p ∗ q)(b) =
∑

s,

(ii) len s = len decomp b, and

(iii) for every natural number k such that k ∈ dom s there exist bag b1, b2

of n such that πk decomp b = 〈b1, b2〉 and πks = p(b1) · q(b2).

One can prove the following two propositions:

(85) Let n be an ordinal number, L be an Abelian add-associative right ze-

roed right complementable distributive associative non empty double loop

structure, and p, q, r be Series of n, L. Then p ∗ (q + r) = p ∗ q + p ∗ r.

(86) Let n be an ordinal number, L be an Abelian add-associative right zeroed

right complementable unital distributive associative non empty double

loop structure, and p, q, r be Series of n, L. Then (p ∗ q) ∗ r = p ∗ (q ∗ r).

Let n be an ordinal number, let L be an Abelian add-associative right zeroed

right complementable commutative non empty double loop structure, and let p,

q be Series of n, L. Let us note that the functor p ∗ q is commutative.

One can prove the following three propositions:

(87) Let n be an ordinal number, L be an add-associative right complementa-

ble right zeroed unital distributive non empty double loop structure, and

p be a Series of n, L. Then p ∗ 0 (n,L) = 0 (n,L).

(88) Let n be an ordinal number, L be an add-associative right complemen-

table right zeroed distributive unital non trivial non empty double loop

structure, and p be a Series of n, L. Then p ∗ 1 (n,L) = p.

(89) Let n be an ordinal number, L be an add-associative right complemen-

table right zeroed distributive unital non trivial non empty double loop

structure, and p be a Series of n, L. Then 1 (n,L) ∗ p = p.
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7. Polynomials

Let n be a set and let S be a non empty zero structure. Note that there

exists a Series of n, S which is finite-Support.

Let n be an ordinal number and let S be a non empty zero structure. A

Polynomial of n, S is a finite-Support Series of n, S.

Let n be an ordinal number, let L be a right zeroed non empty loop structure,

and let p, q be Polynomial of n, L. Observe that p + q is finite-Support.

Let n be an ordinal number, let L be an add-associative right zeroed right

complementable non empty loop structure, and let p be a Polynomial of n, L.

Note that −p is finite-Support.

Let n be a natural number, let L be an add-associative right zeroed right

complementable non empty loop structure, and let p, q be Polynomial of n, L.

Note that p− q is finite-Support.

Let n be an ordinal number and let S be a non empty zero structure. Observe

that 0 (n, S) is finite-Support.

Let n be an ordinal number and let L be an add-associative right zeroed

right complementable unital right-distributive non trivial non empty double

loop structure. Observe that 1 (n,L) is finite-Support.

Let n be an ordinal number, let L be an add-associative right complemen-

table right zeroed unital distributive non empty double loop structure, and let

p, q be Polynomial of n, L. One can check that p ∗ q is finite-Support.

8. The Ring of Polynomials

Let n be an ordinal number and let L be a right zeroed add-associative right

complementable unital distributive non trivial non empty double loop structure.

The functor Polynom-Ring(n,L) yields a strict non empty double loop structure

and is defined by the conditions (Def. 27).

(Def. 27)(i) For every set x holds x ∈ the carrier of Polynom-Ring(n,L) iff x is a

Polynomial of n, L,

(ii) for all elements x, y of Polynom-Ring(n,L) and for all Polynomial p, q

of n, L such that x = p and y = q holds x + y = p + q,

(iii) for all elements x, y of Polynom-Ring(n,L) and for all Polynomial p, q

of n, L such that x = p and y = q holds x · y = p ∗ q,

(iv) 0Polynom-Ring(n,L) = 0 (n,L), and

(v) 1Polynom-Ring(n,L) = 1 (n,L).

Let n be an ordinal number and let L be an Abelian right zeroed add-

associative right complementable unital distributive non trivial non empty do-

uble loop structure. One can check that Polynom-Ring(n,L) is Abelian.
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Let n be an ordinal number and let L be an add-associative right zeroed right

complementable unital distributive non trivial non empty double loop structure.

Observe that Polynom-Ring(n, L) is add-associative.

Let n be an ordinal number and let L be a right zeroed add-associative right

complementable unital distributive non trivial non empty double loop structure.

Note that Polynom-Ring(n, L) is right zeroed.

Let n be an ordinal number and let L be a right complementable right zeroed

add-associative unital distributive non trivial non empty double loop structure.

Observe that Polynom-Ring(n, L) is right complementable.

Let n be an ordinal number and let L be an Abelian add-associative right

zeroed right complementable commutative unital distributive non trivial non

empty double loop structure. Note that Polynom-Ring(n,L) is commutative.

Let n be an ordinal number and let L be an Abelian add-associative right ze-

roed right complementable unital distributive associative non trivial non empty

double loop structure. Note that Polynom-Ring(n,L) is associative.

Let n be an ordinal number and let L be a right zeroed Abelian add-

associative right complementable unital distributive associative non trivial non

empty double loop structure. One can check that Polynom-Ring(n,L) is unital

and right-distributive.
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