Properties of the External Approximation of Jordan's Curve

Artur Korniłowicz¹ University of Białystok

MML Identifier: JORDAN10.

The articles [20], [6], [14], [7], [2], [18], [17], [13], [3], [5], [10], [1], [11], [15], [4], [9], [12], [19], [16], and [8] provide the terminology and notation for this paper.

One can verify that there exists a subset of \mathcal{E}_T^2 which is connected, compact, non vertical, and non horizontal.

We adopt the following rules: i, j, k, n are natural numbers, P is a subset of $\mathcal{E}^2_{\mathrm{T}}$, and C is a connected compact non vertical non horizontal subset of $\mathcal{E}^2_{\mathrm{T}}$.

The following propositions are true:

- (1) Suppose that
- (i) $1 \leqslant k$,
- (ii) $k+1 \leq \operatorname{len} \operatorname{Cage}(C, n),$
- (iii) $\langle i, j \rangle \in \text{the indices of Gauge}(C, n),$
- (iv) $\langle i, j+1 \rangle \in \text{the indices of Gauge}(C, n),$
- (v) $\pi_k \operatorname{Cage}(C, n) = (\operatorname{Gauge}(C, n))_{i,j}$, and
- (vi) $\pi_{k+1} \operatorname{Cage}(C, n) = (\operatorname{Gauge}(C, n))_{i,j+1}$. Then $i < \operatorname{len} \operatorname{Gauge}(C, n)$.
- (2) Suppose that
- (i) $1 \leq k$,
- (ii) $k+1 \leq \operatorname{len} \operatorname{Cage}(C, n)$,
- (iii) $\langle i, j \rangle \in \text{the indices of Gauge}(C, n),$
- (iv) $\langle i, j+1 \rangle \in \text{the indices of Gauge}(C, n),$
- (v) $\pi_k \operatorname{Cage}(C, n) = (\operatorname{Gauge}(C, n))_{i,j+1}$, and
- (vi) $\pi_{k+1} \operatorname{Cage}(C, n) = (\operatorname{Gauge}(C, n))_{i,j}$.

Then i > 1.

¹This paper was written while the author visited Shinshu University, winter 1999.

- (3) Suppose that
- (i) $1 \leqslant k$,
- (ii) $k+1 \leq \operatorname{len} \operatorname{Cage}(C, n),$
- (iii) $\langle i, j \rangle \in \text{the indices of Gauge}(C, n),$
- (iv) $\langle i+1, j \rangle \in \text{the indices of Gauge}(C, n),$
- (v) $\pi_k \operatorname{Cage}(C, n) = (\operatorname{Gauge}(C, n))_{i,j}$, and
- (vi) $\pi_{k+1} \operatorname{Cage}(C, n) = (\operatorname{Gauge}(C, n))_{i+1,j}$. Then j > 1.
- (4) Suppose that
- (i) $1 \leqslant k$,
- (ii) $k+1 \leq \operatorname{len} \operatorname{Cage}(C, n),$
- (iii) $\langle i, j \rangle \in \text{the indices of Gauge}(C, n),$
- (iv) $\langle i+1, j \rangle \in \text{the indices of Gauge}(C, n),$
- (v) $\pi_k \operatorname{Cage}(C, n) = (\operatorname{Gauge}(C, n))_{i+1,j}$, and
- (vi) $\pi_{k+1} \operatorname{Cage}(C, n) = (\operatorname{Gauge}(C, n))_{i,j}$. Then $j < \operatorname{width} \operatorname{Gauge}(C, n)$.
- (5) $C \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) = \emptyset.$
- (6) N-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) = \operatorname{N-bound} C + \frac{\operatorname{N-bound} C \operatorname{S-bound} C}{2^n}$.
- (7) If i < j, then N-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, j)) < \operatorname{N-bound} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, i))$.

Let C be a connected compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^2$ and let n be a natural number. Note that $\overline{\mathrm{RightComp}(\mathrm{Cage}(C,n))}$ is compact.

The following propositions are true:

- (8) N-min $C \in \text{RightComp}(\text{Cage}(C, n))$.
- (9) $C \cap \text{RightComp}(\text{Cage}(C, n)) \neq \emptyset$.
- (10) $C \cap \text{LeftComp}(\text{Cage}(C, n)) = \emptyset.$
- (11) $C \subseteq \text{RightComp}(\text{Cage}(C, n)).$
- (12) $C \subseteq BDD \widetilde{\mathcal{L}}(Cage(C, n)).$
- (13) UBD $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \subseteq \operatorname{UBD} C$.

Let C be a compact non vertical non horizontal subset of \mathcal{E}^2_T . The functor UBD-Family C is defined as follows:

(Def. 1) UBD-Family $C = \{ \text{UBD}\,\widetilde{\mathcal{L}}(\text{Cage}(C, n)) : n \text{ ranges over natural numbers} \}.$

The functor BDD-Family C is defined by:

(Def. 2) BDD-Family $C = \{ \text{BDD}\,\widetilde{\mathcal{L}}(\text{Cage}(C,n)) : n \text{ ranges over natural numbers} \}.$

Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^2$. Then UBD-Family C is a family of subsets of $\mathcal{E}_{\mathrm{T}}^2$. Then BDD-Family C is a family of subsets of $\mathcal{E}_{\mathrm{T}}^2$.

Let C be a compact non vertical non horizontal subset of \mathcal{E}^2_T . Note that UBD-Family C is non empty and BDD-Family C is non empty.

One can prove the following propositions:

- (14) $\bigcup \text{UBD-Family } C = \text{UBD } C.$
- (15) $C \subseteq \bigcap \text{BDD-Family } C$.
- (16) BDD $C \cap \text{LeftComp}(\text{Cage}(C, n)) = \emptyset$.
- (17) BDD $C \subseteq \text{RightComp}(\text{Cage}(C, n)).$
- (18) If P is inside component of C, then $P \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) = \emptyset$.
- (19) BDD $C \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) = \emptyset$.
- (20) \bigcap BDD-Family $C = C \cup$ BDD C.

ACKNOWLEDGMENTS

I would like to thank Professor Yatsuka Nakamura for his help in the preparation of the article.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25–27, 1999.
- [4] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^2 . Formalized Mathematics, 6(3):427–440, 1997.
- [5] Czesław Byliński and Mariusz Żynel. Cages the external approximation of Jordan's curve. Formalized Mathematics, 9(1):19–24, 2001.
- [6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
- [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [8] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathbf{T}}^2$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [10] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [11] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
- [12] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.
- [13] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1–13, 1999.
- [14] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [17] Andrzej Trybulec. Left and right component of the complement of a special closed curve. Formalized Mathematics, 5(4):465–468, 1996.
- [18] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[20] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received June 24, 1999