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The articles [20], [6], [14], [7], [2], [18], [17], [13], [3], [5], [10], [1], [11], [15], [4],
9], [12], [19], [16], and [8] provide the terminology and notation for this paper.
One can verify that there exists a subset of E% which is connected, compact,
non vertical, and non horizontal.
We adopt the following rules: i, j, k, n are natural numbers, P is a subset
of 5%, and C' is a connected compact non vertical non horizontal subset of 5%.
The following propositions are true:
(1) Suppose that
) 1<k
) k+1<lenCage(C,n),
(iii) (4, j) € the indices of Gauge(C,n),
)
)
)

(iv) (i, j + 1) € the indices of Gauge(C,n),
(v) m Cage(C,n) = (Gauge(C,n)); ;, and
(vi mr+1 Cage(C,n) = (Gauge(C,n))i j+1-

Then ¢ < len Gauge(C, n).
(2) Suppose that
() 1<k,
k+ 1 <lenCage(C,n),

)

)
(iii) (4, j) € the indices of Gauge(C,n),
(iv) (7, j + 1) € the indices of Gauge(C,n),
(v) m,Cage(C,n) = (Gauge(C,n)); j+1, and
(vi) 741 Cage(C,n) = (Gauge(C,n)); ;.

Then 7 > 1.

I This paper was written while the author visited Shinshu University, winter 1999.
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(3) Suppose that
) 1<k,
) k+1<lenCage(C,n),

) (i, j) € the indices of Gauge(C,n),
(iv) (i +1, j) € the indices of Gauge(C,n),
)

)

(v) m,Cage(C,n) = (Gauge(C,n)); ;, and

(Vi Thk+1 Cage(cu n) = (Ga’uge(cv n))i-‘rl,j-
Then j > 1.

(4) Suppose that

) 1<k,
) k41 <lenCage(C,n),
(iii) (4, j) € the indices of Gauge(C,n),
) (i+1, j) € the indices of Gauge(C,n),
) 7, Cage(C,n) = (Gauge(C,n))it+1,, and
) 71 Cage(C,n) = (Gauge(C,n)); ;-
Then j < width Gauge(C, n).
(5) C N L(Cage(C,n)) = 0.
(6) N-bound £(Cage(C,n)) = N-bound ' + N-bound ¢Sbound €
(7) 1If i < j, then N-bound £(Cage(C, 7)) < N-bound £(Cage(C,7)).
Let C be a connected compact non vertical non horizontal subset of 5% and

let n be a natural number. Note that RightComp(Cage(C,n)) is compact.
The following propositions are true:

) N-minC € RightComp(Cage(C,n)).

) C N RightComp(Cage(C, n)) # 0.
10) C N LeftComp(Cage(C,n)) = 0.

)

)

)

C C RightComp(Cage(C, n)).
C C BDD L(Cage(C,n)).
UBD £(Cage(C,n)) C UBDC.

Let C be a compact non vertical non horizontal subset of 5%. The functor
UBD-Family C' is defined as follows:

(Def. 1) UBD-FamilyC = {UBD L(Cage(C,n)) : n ranges over natural
numbers}.
The functor BDD-Family C' is defined by:
(Def. 2) BDD-FamilyC = {BDD £(Cage(C,n)) : n ranges over natural
numbers}.

Let C be a compact non vertical non horizontal subset of £%. Then UBD-Family
C is a family of subsets of £2. Then BDD-Family C' is a family of subsets of
£2.
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Let C' be a compact non vertical non horizontal subset of 5%. Note that
UBD-Family C' is non empty and BDD-Family C' is non empty.
One can prove the following propositions:

14) |JUBD-Family C = UBDC.

C C (" BDD-Family C.

BDD C N LeftComp(Cage(C,n)) = 0.

BDD C C RightComp(Cage(C, n)).

If P is inside component of C, then P N £(Cage(C,n)) = 0.
BDD C N £(Cage(C,n)) = 0.

(1BDD-Family C = C UBDD C.
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