Properties of the External Approximation of Jordan's Curve

Artur Korniłowicz ${ }^{1}$
University of Białystok

MML Identifier: JORDAN10.

The articles [20], [6], [14], [7], [2], [18], [17], [13], [3], [5], [10], [1], [11], [15], [4], [9], [12], [19], [16], and [8] provide the terminology and notation for this paper.

One can verify that there exists a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ which is connected, compact, non vertical, and non horizontal.

We adopt the following rules: i, j, k, n are natural numbers, P is a subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and C is a connected compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$.

The following propositions are true:
(1) Suppose that
(i) $1 \leqslant k$,
(ii) $k+1 \leqslant$ len $\operatorname{Cage}(C, n)$,
(iii) $\langle i, j\rangle \in$ the indices of Gauge (C, n),
(iv) $\langle i, j+1\rangle \in$ the indices of Gauge (C, n),
(v) $\quad \pi_{k} \operatorname{Cage}(C, n)=(\operatorname{Gauge}(C, n))_{i, j}$, and
(vi) $\quad \pi_{k+1} \operatorname{Cage}(C, n)=(\operatorname{Gauge}(C, n))_{i, j+1}$.

Then $i<$ len Gauge (C, n).
(2) Suppose that
(i) $1 \leqslant k$,
(ii) $k+1 \leqslant$ len $\operatorname{Cage}(C, n)$,
(iii) $\langle i, j\rangle \in$ the indices of Gauge (C, n),
(iv) $\langle i, j+1\rangle \in$ the indices of Gauge (C, n),
(v) $\quad \pi_{k} \operatorname{Cage}(C, n)=(\operatorname{Gauge}(C, n))_{i, j+1}$, and
(vi) $\quad \pi_{k+1} \operatorname{Cage}(C, n)=(\operatorname{Gauge}(C, n))_{i, j}$.

Then $i>1$.

[^0](3) Suppose that
(i) $1 \leqslant k$,
(ii) $k+1 \leqslant$ len $\operatorname{Cage}(C, n)$,
(iii) $\langle i, j\rangle \in$ the indices of Gauge (C, n),
(iv) $\langle i+1, j\rangle \in$ the indices of Gauge (C, n),
(v) $\quad \pi_{k} \operatorname{Cage}(C, n)=(\text { Gauge }(C, n))_{i, j}$, and
(vi) $\quad \pi_{k+1} \operatorname{Cage}(C, n)=(\operatorname{Gauge}(C, n))_{i+1, j}$.

Then $j>1$.
(4) Suppose that
(i) $1 \leqslant k$,
(ii) $k+1 \leqslant$ len Cage (C, n),
(iii) $\langle i, j\rangle \in$ the indices of Gauge (C, n),
(iv) $\langle i+1, j\rangle \in$ the indices of Gauge (C, n),
(v) $\quad \pi_{k} \operatorname{Cage}(C, n)=(\operatorname{Gauge}(C, n))_{i+1, j}$, and
(vi) $\quad \pi_{k+1} \operatorname{Cage}(C, n)=(\operatorname{Gauge}(C, n))_{i, j}$.

Then $j<$ width Gauge (C, n).
(5) $\quad C \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=\emptyset$.
(6) N-bound $\widetilde{\mathcal{L}}($ Cage $(C, n))=\mathrm{N}$-bound $C+\frac{\mathrm{N} \text {-bound } C \text {-S-bound } C}{2^{n}}$.
(7) If $i<j$, then N-bound $\widetilde{\mathcal{L}}(\operatorname{Cage}(C, j))<\mathrm{N}$-bound $\widetilde{\mathcal{L}}($ Cage $(C, i))$.

Let C be a connected compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and let n be a natural number. Note that $\overline{\operatorname{RightComp}(\operatorname{Cage}(C, n))}$ is compact.

The following propositions are true:
(8) $\mathrm{N}-\min C \in \operatorname{RightComp}(\operatorname{Cage}(C, n))$.
(9) $C \cap \operatorname{RightComp}(\operatorname{Cage}(C, n)) \neq \emptyset$.
(10) $C \cap \operatorname{LeftComp}(\operatorname{Cage}(C, n))=\emptyset$.
(11) $C \subseteq \operatorname{RightComp}(\operatorname{Cage}(C, n))$.
(12) $\quad C \subseteq \operatorname{BDD} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))$.
(13) $\operatorname{UBD} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)) \subseteq \operatorname{UBD} C$.

Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$. The functor UBD-Family C is defined as follows:
(Def. 1) UBD-Family $C=\{\operatorname{UBD} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)): n$ ranges over natural numbers $\}$.
The functor BDD-Family C is defined by:
(Def. 2) BDD-Family $C=\{\operatorname{BDD} \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n)): n$ ranges over natural numbers $\}$.
Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Then UBD-Family C is a family of subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Then BDD-Family C is a family of subsets of $\mathcal{E}_{\mathrm{T}}^{2}$.

Let C be a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Note that UBD-Family C is non empty and BDD-Family C is non empty.

One can prove the following propositions:

```
\(\bigcup\) UBD-Family \(C=\mathrm{UBD} C\).
\(C \subseteq \bigcap\) BDD-Family \(C\).
\(\operatorname{BDD} C \cap \operatorname{LeftComp}(\operatorname{Cage}(C, n))=\emptyset\).
\(\operatorname{BDD} C \subseteq \operatorname{RightComp}(\operatorname{Cage}(C, n))\).
If \(P\) is inside component of \(C\), then \(P \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=\emptyset\).
\(\operatorname{BDD} C \cap \widetilde{\mathcal{L}}(\operatorname{Cage}(C, n))=\emptyset\).
\(\bigcap \mathrm{BDD}\)-Family \(C=C \cup \mathrm{BDD} C\).
```


Acknowledgments

I would like to thank Professor Yatsuka Nakamura for his help in the preparation of the article.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25-27, 1999.
[4] Czesław Bylinski and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[5] Czesław Byliński and Mariusz Żynel. Cages - the external approximation of Jordan’s curve. Formalized Mathematics, 9(1):19-24, 2001.
[6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[11] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[12] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
[13] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Bylíski. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.
[14] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec. Left and right component of the complement of a special closed curve. Formalized Mathematics, 5(4):465-468, 1996.
[18] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received June 24, 1999

[^0]: ${ }^{1}$ This paper was written while the author visited Shinshu University, winter 1999.

