Irrationality of e

Freek Wiedijk ${ }^{1}$
University of Nijmegen

Summary. We prove the irrationality of square roots of prime numbers and of the number e. In order to be able to prove the last, a proof is given that number_e $=\exp (1)$ as defined in the Mizar library, that is that

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{\infty} \frac{1}{k!}
$$

MML Identifier: IRRAT_1.

The articles [2], [3], [4], [18], [14], [1], [6], [13], [15], [8], [7], [20], [12], [5], [10], [11], [9], [16], [21], [17], and [19] provide the notation and terminology for this paper.

1. Square Roots of Primes are Irrational

For simplicity, we follow the rules: k, n, p, K, N are natural numbers, x, y, e_{1} are real numbers, s_{1}, s_{2}, s_{3} are sequences of real numbers, and s_{4} is a finite sequence of elements of \mathbb{R}.

Let us consider x. We introduce x is irrational as an antonym of x is rational.
Let us consider x, y. We introduce x^{y} as a synonym of x^{y}.
One can prove the following two propositions:
(1) If p is prime, then \sqrt{p} is irrational.
(2) There exist x, y such that x is irrational and y is irrational and x^{y} is rational.

[^0]
2. A PROOF THAT $e=e$

The scheme LambdaRealSeq deals with a unary functor \mathcal{F} yielding a real number, and states that:

There exists s_{1} such that for every n holds $s_{1}(n)=\mathcal{F}(n)$ and for all s_{2}, s_{3} such that for every n holds $s_{2}(n)=\mathcal{F}(n)$ and for every n holds $s_{3}(n)=\mathcal{F}(n)$ holds $s_{2}=s_{3}$
for all values of the parameter.
Let us consider k. The functor \mathbf{a}_{k} is a sequence of real numbers and is defined by:
(Def. 1) For every n holds $\mathbf{a}_{k}(n)=\frac{n-k}{n}$.
Let us consider k. The functor \mathbf{b}_{k} is a sequence of real numbers and is defined by:
(Def. 2) For every n holds $\mathbf{b}_{k}(n)=\binom{n}{k} \cdot n^{-k}$.
Let us consider n. The functor \mathbf{c}_{n} is a sequence of real numbers and is defined as follows:
(Def. 3) For every k holds $\mathbf{c}_{n}(k)=\binom{n}{k} \cdot n^{-k}$.
Next we state the proposition
(3) $\quad \mathbf{c}_{n}(k)=\mathbf{b}_{k}(n)$.

The sequence \mathbf{d} of real numbers is defined as follows:
(Def. 4) For every n holds $\mathbf{d}(n)=\left(1+\frac{1}{n}\right)^{n}$.
The sequence \mathbf{e} of real numbers is defined as follows:
(Def. 5) For every k holds $\mathbf{e}(k)=\frac{1}{k!}$.
We now state a number of propositions:
(4) If $n>0$, then $n^{-(k+1)}=\frac{n^{-k}}{n}$.
(5) For all real numbers x, y, z, v, w such that $y \neq 0$ and $z \neq 0$ and $v \neq 0$ and $w \neq 0$ holds $\frac{x}{y \cdot z \cdot \frac{v}{w}}=\frac{w}{z} \cdot \frac{x}{y \cdot v}$.
(6) $\quad\binom{n}{k+1}=\frac{n-k}{k+1} \cdot\binom{n}{k}$.
(7) If $n>0$, then $\mathbf{b}_{k+1}(n)=\frac{1}{k+1} \cdot \mathbf{b}_{k}(n) \cdot \mathbf{a}_{k}(n)$.
(8) If $n>0$, then $\mathbf{a}_{k}(n)=1-\frac{k}{n}$.
(9) \mathbf{a}_{k} is convergent and $\lim \left(\mathbf{a}_{k}\right)=1$.
(10) For every s_{1} such that for every n holds $s_{1}(n)=x$ holds s_{1} is convergent and $\lim s_{1}=x$.
(11) For every n such that $n>0$ holds $\mathbf{b}_{0}(n)=1$.
(12) $\frac{1}{k+1} \cdot \frac{1}{k!}=\frac{1}{(k+1)!}$.
(13) \mathbf{b}_{k} is convergent and $\lim \left(\mathbf{b}_{k}\right)=\frac{1}{k!}$ and $\lim \left(\mathbf{b}_{k}\right)=\mathbf{e}(k)$.
(14) If $k<n$, then $0<\mathbf{a}_{k}(n)$ and $\mathbf{a}_{k}(n) \leqslant 1$.
(15) If $n>0$, then $0 \leqslant \mathbf{b}_{k}(n)$ and $\mathbf{b}_{k}(n) \leqslant \frac{1}{k!}$ and $\mathbf{b}_{k}(n) \leqslant \mathbf{e}(k)$ and $0 \leqslant \mathbf{c}_{n}(k)$ and $\mathbf{c}_{n}(k) \leqslant \frac{1}{k!}$ and $\mathbf{c}_{n}(k) \leqslant \mathbf{e}(k)$.
(16) For every s_{1} such that $s_{1} \uparrow 1$ is summable holds s_{1} is summable and $\sum s_{1}=s_{1}(0)+\sum\left(s_{1} \uparrow 1\right)$.
(17) For every s_{4} such that len $s_{4}=n$ and $1 \leqslant k$ and $k<n$ holds $\left(s_{4}\right)_{L_{1}}(k)=$ $s_{4}(k+1)$.
(18) For every s_{4} such that len $s_{4}>0$ holds $\sum s_{4}=s_{4}(1)+\sum\left(\left(s_{4}\right)_{\llcorner 1}\right)$.
(19) Let given n and given s_{1}, s_{4}. Suppose len $s_{4}=n$ and for every k such that $k<n$ holds $s_{1}(k)=s_{4}(k+1)$ and for every k such that $k \geqslant n$ holds $s_{1}(k)=0$. Then s_{1} is summable and $\sum s_{1}=\sum s_{4}$.
(20) If $x \neq 0$ and $y \neq 0$ and $k \leqslant n$, then $\left\langle\binom{ n}{0} x^{0} y^{n}, \ldots,\binom{n}{n} x^{n} y^{0}\right\rangle(k+1)=$ $\binom{n}{k} \cdot x^{n-k} \cdot y^{k}$.
(21) If $n>0$ and $k \leqslant n$, then $\mathbf{c}_{n}(k)=\left\langle\binom{ n}{0} 1^{0}\left(\frac{1}{n}\right)^{n}, \ldots,\binom{n}{n} 1^{n}\left(\frac{1}{n}\right)^{0}\right\rangle(k+1)$.
(22) If $n>0$, then \mathbf{c}_{n} is summable and $\sum\left(\mathbf{c}_{n}\right)=\left(1+\frac{1}{n}\right)^{n}$ and $\sum\left(\mathbf{c}_{n}\right)=\mathbf{d}(n)$.
(23) \mathbf{d} is convergent and $\lim \mathbf{d}=e$.
(24) \mathbf{e} is summable and $\sum \mathbf{e}=\exp 1$.
(25) Let given K and d_{1} be a sequence of real numbers. If for every n holds $d_{1}(n)=\left(\sum_{\alpha=0}^{\kappa}\left(\mathbf{c}_{n}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(K)$, then d_{1} is convergent and $\lim d_{1}=$ $\left(\sum_{\alpha=0}^{\kappa} \mathbf{e}(\alpha)\right)_{\kappa \in \mathbb{N}}(K)$.
(26) If s_{1} is convergent and $\lim s_{1}=x$, then for every e_{1} such that $e_{1}>0$ there exists N such that for every n such that $n \geqslant N$ holds $s_{1}(n)>x-e_{1}$.
(27) Suppose that
(i) for every e_{1} such that $e_{1}>0$ there exists N such that for every n such that $n \geqslant N$ holds $s_{1}(n)>x-e_{1}$, and
(ii) there exists N such that for every n such that $n \geqslant N$ holds $s_{1}(n) \leqslant x$. Then s_{1} is convergent and $\lim s_{1}=x$.
(28) If s_{1} is summable, then for every e_{1} such that $e_{1}>0$ there exists K such that $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(K)>\sum s_{1}-e_{1}$.
(29) If $n \geqslant 1$, then $\mathbf{d}(n) \leqslant \sum \mathbf{e}$.
(30) If s_{1} is summable and for every k holds $s_{1}(k) \geqslant 0$, then $\sum s_{1} \geqslant$ $\left(\sum_{\alpha=0}^{\kappa}\left(s_{1}\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(K)$.
(31) \mathbf{d} is convergent and $\lim \mathbf{d}=\sum \mathbf{e}$.
e can be characterized by the condition:
(Def. 6) $\quad e=\sum \mathbf{e}$.
e can be characterized by the condition:
(Def. 7) $e=\exp 1$.

3. The Number e is Irrational

We now state a number of propositions:
(32) If x is rational, then there exists n such that $n \geqslant 2$ and $n!\cdot x$ is integer.
(33) $n!\cdot \mathbf{e}(k)=\frac{n!}{k!}$.
(34) $\frac{n!}{k!}>0$.
(35) If s_{1} is summable and for every n holds $s_{1}(n)>0$, then $\sum s_{1}>0$.
(36) $n!\cdot \sum(\mathbf{e} \uparrow(n+1))>0$.
(37) If $k \leqslant n$, then $\frac{n!}{k!}$ is integer.
(38) $n!\cdot\left(\sum_{\alpha=0}^{\kappa} \mathbf{e}(\alpha)\right)_{\kappa \in \mathbb{N}}(n)$ is integer.
(39) If $x=\frac{1}{n+1}$, then $\frac{n!}{(n+k+1)!} \leqslant x^{k+1}$.
(40) If $n>0$ and $x=\frac{1}{n+1}$, then $n!\cdot \sum(\mathbf{e} \uparrow(n+1)) \leqslant \frac{x}{1-x}$.
(41) If $n \geqslant 2$ and $x=\frac{1}{n+1}$, then $\frac{x}{1-x}<1$.
(42) e is irrational.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[6] Marek Chmur. The lattice of natural numbers and the sublattice of it. The set of prime numbers. Formalized Mathematics, 2(4):453-459, 1991.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
[9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[10] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, $1(\mathbf{3}): 471-475,1990$.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[13] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[14] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[15] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[16] Konrad Raczkowski and Andrzej Nędzusiak. Serieses. Formalized Mathematics, 2(4):449452, 1991.
[17] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[21] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received July 2, 1999

[^0]: ${ }^{1}$ Written while a guest of the Institute of Mathematics of the University of Białystok.

