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Summary. We prove the irrationality of square roots of prime numbers
and of the number e. In order to be able to prove the last, a proof is given that

number e = exp(1) as defined in the Mizar library, that is that

lim
n→∞

(1 +
1

n
)n =

∞∑

k=0

1

k!

MML Identifier: IRRAT 1.

The articles [2], [3], [4], [18], [14], [1], [6], [13], [15], [8], [7], [20], [12], [5], [10],

[11], [9], [16], [21], [17], and [19] provide the notation and terminology for this

paper.

1. Square Roots of Primes are Irrational

For simplicity, we follow the rules: k, n, p, K, N are natural numbers, x, y,

e1 are real numbers, s1, s2, s3 are sequences of real numbers, and s4 is a finite

sequence of elements of R.

Let us consider x. We introduce x is irrational as an antonym of x is rational.

Let us consider x, y. We introduce xy as a synonym of xy.

One can prove the following two propositions:

(1) If p is prime, then
√

p is irrational.

(2) There exist x, y such that x is irrational and y is irrational and xy is

rational.

1Written while a guest of the Institute of Mathematics of the University of Białystok.
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2. A proof that e = e

The scheme LambdaRealSeq deals with a unary functor F yielding a real
number, and states that:

There exists s1 such that for every n holds s1(n) = F(n) and for

all s2, s3 such that for every n holds s2(n) = F(n) and for every

n holds s3(n) = F(n) holds s2 = s3

for all values of the parameter.

Let us consider k. The functor ak is a sequence of real numbers and is defined

by:

(Def. 1) For every n holds ak(n) = n−k
n

.

Let us consider k. The functor bk is a sequence of real numbers and is defined

by:

(Def. 2) For every n holds bk(n) =
(

n
k

)

· n−k.

Let us consider n. The functor cn is a sequence of real numbers and is defined

as follows:

(Def. 3) For every k holds cn(k) =
(

n
k

)

· n−k.

Next we state the proposition

(3) cn(k) = bk(n).

The sequence d of real numbers is defined as follows:

(Def. 4) For every n holds d(n) = (1 + 1
n
)n.

The sequence e of real numbers is defined as follows:

(Def. 5) For every k holds e(k) = 1
k! .

We now state a number of propositions:

(4) If n > 0, then n−(k+1) = n−k

n
.

(5) For all real numbers x, y, z, v, w such that y 6= 0 and z 6= 0 and v 6= 0

and w 6= 0 holds x
y·z· v

w

= w
z
· x

y·v
.

(6)
(

n
k+1

)

= n−k
k+1 ·

(

n
k

)

.

(7) If n > 0, then bk+1(n) = 1
k+1 · bk(n) · ak(n).

(8) If n > 0, then ak(n) = 1− k
n
.

(9) ak is convergent and lim(ak) = 1.

(10) For every s1 such that for every n holds s1(n) = x holds s1 is convergent

and lim s1 = x.

(11) For every n such that n > 0 holds b0(n) = 1.

(12) 1
k+1 · 1

k! = 1
(k+1)! .

(13) bk is convergent and lim(bk) = 1
k! and lim(bk) = e(k).

(14) If k < n, then 0 < ak(n) and ak(n) ¬ 1.
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(15) If n > 0, then 0 ¬ bk(n) and bk(n) ¬ 1
k! and bk(n) ¬ e(k) and 0 ¬ cn(k)

and cn(k) ¬ 1
k! and cn(k) ¬ e(k).

(16) For every s1 such that s1 ↑ 1 is summable holds s1 is summable and
∑

s1 = s1(0) +
∑

(s1 ↑ 1).

(17) For every s4 such that len s4 = n and 1 ¬ k and k < n holds (s4)⇂1(k) =

s4(k + 1).

(18) For every s4 such that len s4 > 0 holds
∑

s4 = s4(1) +
∑

((s4)⇂1).

(19) Let given n and given s1, s4. Suppose len s4 = n and for every k such

that k < n holds s1(k) = s4(k + 1) and for every k such that k  n holds

s1(k) = 0. Then s1 is summable and
∑

s1 =
∑

s4.

(20) If x 6= 0 and y 6= 0 and k ¬ n, then 〈
(

n
0

)

x0yn, . . . ,
(

n
n

)

xny0〉(k + 1) =
(

n
k

)

· xn−k · yk.

(21) If n > 0 and k ¬ n, then cn(k) = 〈
(

n
0

)

10( 1
n
)n, . . . ,

(

n
n

)

1n( 1
n
)0〉(k + 1).

(22) If n > 0, then cn is summable and
∑

(cn) = (1+ 1
n
)n and

∑

(cn) = d(n).

(23) d is convergent and limd = e.

(24) e is summable and
∑

e = exp 1.

(25) Let given K and d1 be a sequence of real numbers. If for every n

holds d1(n) = (
∑κ

α=0(cn)(α))κ∈N(K), then d1 is convergent and lim d1 =

(
∑κ

α=0 e(α))κ∈N(K).

(26) If s1 is convergent and lim s1 = x, then for every e1 such that e1 > 0

there exists N such that for every n such that n  N holds s1(n) > x−e1.

(27) Suppose that

(i) for every e1 such that e1 > 0 there exists N such that for every n such

that n  N holds s1(n) > x− e1, and

(ii) there exists N such that for every n such that n  N holds s1(n) ¬ x.

Then s1 is convergent and lim s1 = x.

(28) If s1 is summable, then for every e1 such that e1 > 0 there exists K such

that (
∑κ

α=0(s1)(α))κ∈N(K) >
∑

s1 − e1.

(29) If n  1, then d(n) ¬∑

e.

(30) If s1 is summable and for every k holds s1(k)  0, then
∑

s1 
(
∑κ

α=0(s1)(α))κ∈N(K).

(31) d is convergent and limd =
∑

e.

e can be characterized by the condition:

(Def. 6) e =
∑

e.

e can be characterized by the condition:

(Def. 7) e = exp 1.



38 freek wiedijk

3. The Number e is Irrational

We now state a number of propositions:

(32) If x is rational, then there exists n such that n  2 and n! · x is integer.
(33) n! · e(k) = n!

k! .

(34) n!
k! > 0.

(35) If s1 is summable and for every n holds s1(n) > 0, then
∑

s1 > 0.

(36) n! ·∑(e ↑ (n + 1)) > 0.

(37) If k ¬ n, then n!
k! is integer.

(38) n! · (∑κ
α=0 e(α))κ∈N(n) is integer.

(39) If x = 1
n+1 , then n!

(n+k+1)! ¬ xk+1.

(40) If n > 0 and x = 1
n+1 , then n! ·∑(e ↑ (n + 1)) ¬ x

1−x
.

(41) If n  2 and x = 1
n+1 , then x

1−x
< 1.

(42) e is irrational.
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