Darboux's Theorem

Noboru Endou Shinshu University Nagano Katsumi Wasaki Shinshu University Nagano Yasunari Shidama Shinshu University Nagano

Summary. In this article, we have proved the Darboux's theorem. This theorem is important to prove the Riemann integrability. We can replace an upper bound and a lower bound of a function which is the definition of Riemann integration with convergence of sequence by Darboux's theorem.

 ${\rm MML} \ {\rm Identifier:} \ {\tt INTEGRA3}.$

The articles [18], [14], [1], [2], [3], [12], [7], [8], [13], [4], [6], [9], [19], [11], [5], [10], [15], [17], and [16] provide the notation and terminology for this paper.

1. Lemmas of Division

We adopt the following convention: x, y are real numbers, i, j, k are natural numbers, and p, q are finite sequences of elements of \mathbb{R} .

The following propositions are true:

- (1) Let A be a closed-interval subset of \mathbb{R} and D be an element of divs A. If $\operatorname{vol}(A) \neq 0$, then there exists i such that $i \in \operatorname{dom} D$ and $\operatorname{vol}(\operatorname{divset}(D, i)) > 0$.
- (2) Let A be a closed-interval subset of \mathbb{R} , D be an element of divs A, and given x. If $x \in A$, then there exists j such that $j \in \text{dom } D$ and $x \in \text{divset}(D, j)$.
- (3) Let A be a closed-interval subset of \mathbb{R} and D_1 , D_2 be elements of divs A. Then there exists an element D of divs A such that $D_1 \leq D$ and $D_2 \leq D$ and rng $D = \operatorname{rng} D_1 \cup \operatorname{rng} D_2$.

C 2001 University of Białystok ISSN 1426-2630

NOBORU ENDOU et al.

- (4) Let A be a closed-interval subset of \mathbb{R} and D, D₁ be elements of divs A. Suppose $\delta_{(D_1)} < \min \operatorname{rng} \operatorname{upper_volume}(\chi_{A,A}, D)$. Let given x, y, i. If $i \in \operatorname{dom} D_1$ and $x \in \operatorname{rng} D \cap \operatorname{divset}(D_1, i)$ and $y \in \operatorname{rng} D \cap \operatorname{divset}(D_1, i)$, then x = y.
- (5) For all p, q such that rng $p = \operatorname{rng} q$ and p is increasing and q is increasing holds p = q.
- (6) Let A be a closed-interval subset of \mathbb{R} , D, D₁ be elements of divs A, and given i, j. Suppose $D \leq D_1$ and $i \in \text{dom } D$ and $j \in \text{dom } D$ and $i \leq j$. Then $\text{indx}(D_1, D, i) \leq \text{indx}(D_1, D, j)$ and $\text{indx}(D_1, D, i) \in \text{dom } D_1$ and $\text{indx}(D_1, D, j) \in \text{dom } D_1$.
- (7) Let A be a closed-interval subset of \mathbb{R} , D, D₁ be elements of divs A, and given i, j. Suppose $D \leq D_1$ and $i \in \text{dom } D$ and $j \in \text{dom } D$ and i < j. Then $\text{indx}(D_1, D, i) < \text{indx}(D_1, D, j)$ and $\text{indx}(D_1, D, i) \in \text{dom } D_1$ and $\text{indx}(D_1, D, j) \in \text{dom } D_1$.
- (8) For every closed-interval subset A of \mathbb{R} and for every element D of divs A holds $\delta_D \ge 0$.
- (9) Let A be a closed-interval subset of \mathbb{R} , g be a partial function from A to \mathbb{R} , D_1 , D_2 be elements of divs A, and given x. Suppose $x \in \text{divset}(D_1, \text{len } D_1)$ and $\text{len } D_1 \ge 2$ and $D_1 \le D_2$ and $\text{rng } D_2 = \text{rng } D_1 \cup \{x\}$ and g is total and bounded on A. Then $\sum \text{lower_volume}(g, D_2) - \sum \text{lower_volume}(g, D_1) \le$ (sup rng $g - \text{inf rng } g) \cdot \delta_{(D_1)}$.
- (10) Let A be a closed-interval subset of \mathbb{R} , g be a partial function from A to \mathbb{R} , D_1 , D_2 be elements of divs A, and given x. Suppose $x \in \text{divset}(D_1, \text{len } D_1)$ and len $D_1 \ge 2$ and $D_1 \le D_2$ and $\text{rng } D_2 = \text{rng } D_1 \cup \{x\}$ and g is total and bounded on A. Then $\sum \text{upper_volume}(g, D_1) - \sum \text{upper_volume}(g, D_2) \le$ (sup rng $g - \inf \text{rng } g$) $\cdot \delta_{(D_1)}$.
- (11) Let A be a closed-interval subset of \mathbb{R} , D be an element of divs A, r be a real number, and i, j be natural numbers. Suppose $i \in \text{dom } D$ and $j \in \text{dom } D$ and $i \leq j$ and r < (mid(D, i, j))(1). Then there exists a closed-interval subset B of \mathbb{R} such that $r = \inf B$ and $\sup B = (\text{mid}(D, i, j))(\text{len mid}(D, i, j))$ and len mid(D, i, j) = (j i) + 1 and mid(D, i, j) is a DivisionPoint of B.
- (12) Let A be a closed-interval subset of \mathbb{R} , f be a partial function from A to \mathbb{R} , D_1 , D_2 be elements of divs A, and given x. Suppose $x \in \operatorname{divset}(D_1, \operatorname{len} D_1)$ and $\operatorname{vol}(A) \neq 0$ and $D_1 \leqslant D_2$ and $\operatorname{rng} D_2 =$ $\operatorname{rng} D_1 \cup \{x\}$ and f is total and bounded on A and $x > \inf A$. Then $\sum \operatorname{lower_volume}(f, D_2) - \sum \operatorname{lower_volume}(f, D_1) \leqslant (\sup \operatorname{rng} f - \inf \operatorname{rng} f) \cdot \delta_{(D_1)}$.
- (13) Let A be a closed-interval subset of \mathbb{R} , f be a partial function from A to \mathbb{R} , D_1 , D_2 be elements of divs A, and given x. Suppose

198

 $x \in \operatorname{divset}(D_1, \operatorname{len} D_1)$ and $\operatorname{vol}(A) \neq 0$ and $D_1 \leq D_2$ and $\operatorname{rng} D_2 = \operatorname{rng} D_1 \cup \{x\}$ and f is total and bounded on A and $x > \inf A$. Then $\sum \operatorname{upper_volume}(f, D_1) - \sum \operatorname{upper_volume}(f, D_2) \leq (\operatorname{sup\,rng} f - \inf \operatorname{rng} f) \cdot \delta_{(D_1)}$.

- (14) Let A be a closed-interval subset of \mathbb{R} , D_1 , D_2 be elements of divs A, r be a real number, and i, j be natural numbers. Suppose $i \in \text{dom } D_1$ and $j \in \text{dom } D_1$ and $i \leq j$ and $D_1 \leq D_2$ and $r < (\text{mid}(D_2, \text{indx}(D_2, D_1, i), \text{indx}(D_2, D_1, j)))(1)$. Then there exists a closed-interval subset B of \mathbb{R} and there exist elements M_1 , M_2 of divs B such that $r = \inf B$ and $\sup B = M_2(\text{len } M_2)$ and $\sup B = M_1(\text{len } M_1)$ and $M_1 \leq M_2$ and $M_1 = \text{mid}(D_1, i, j)$ and $M_2 = \text{mid}(D_2, \text{indx}(D_2, D_1, i), \text{indx}(D_2, D_1, j))$.
- (15) Let A be a closed-interval subset of \mathbb{R} , D be an element of divs A, and given x. If $x \in \operatorname{rng} D$, then $D(1) \leq x$ and $x \leq D(\operatorname{len} D)$.
- (16) Let p be a finite sequence of elements of \mathbb{R} and given i, j, k. Suppose p is increasing and $i \in \text{dom } p$ and $j \in \text{dom } p$ and $k \in \text{dom } p$ and $p(i) \leq p(k)$ and $p(k) \leq p(j)$. Then $p(k) \in \text{rng mid}(p, i, j)$.
- (17) Let A be a closed-interval subset of \mathbb{R} , f be a partial function from A to \mathbb{R} , D be an element of divs A, and given i. If f is total and bounded on A and $i \in \text{dom } D$, then $\inf \text{rng}(f \upharpoonright \text{divset}(D, i)) \leq \sup \text{rng } f$.
- (18) Let A be a closed-interval subset of \mathbb{R} , f be a partial function from A to \mathbb{R} , D be an element of divs A, and given i. If f is total and bounded on A and $i \in \text{dom } D$, then $\sup \operatorname{rng}(f | \operatorname{divset}(D, i)) \ge \inf \operatorname{rng} f$.

2. DARBOUX'S THEOREM

The following two propositions are true:

- (19) Let A be a closed-interval subset of \mathbb{R} , f be a partial function from A to \mathbb{R} , and T be a DivSequence of A. Suppose f is total and bounded on A and δ_T is convergent to 0 and $\operatorname{vol}(A) \neq 0$. Then lower_sum(f, T) is convergent and lim lower_sum $(f, T) = \operatorname{lower_integral} f$.
- (20) Let A be a closed-interval subset of \mathbb{R} , f be a partial function from A to \mathbb{R} , and T be a DivSequence of A. Suppose f is total and bounded on A and δ_T is convergent to 0 and $\operatorname{vol}(A) \neq 0$. Then upper_sum(f,T) is convergent and lim upper_sum $(f,T) = \operatorname{upper_integral} f$.

References

 Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.

NOBORU ENDOU et al.

- [2] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [5] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Formalized Mathematics, 6(3):427-440, 1997.
- [7] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93–102, 1999.
- [8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191–196, 2001.
 [8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191–196, 2001.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
 [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [10] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [11] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703–709, 1990.
- [12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [13] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255–263, 1997.
- [14] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797–801, 1990.
- [15] Piotr Rudnicki. The for (going up) macro instruction. Formalized Mathematics, 7(1):107– 114, 1998.
- [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [18] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received December 7, 1999