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Summary. In this article, we have proved the Darboux’s theorem. This
theorem is important to prove the Riemann integrability. We can replace an
upper bound and a lower bound of a function which is the definition of Riemann
integration with convergence of sequence by Darboux’s theorem.

MML Identifier: INTEGRA3.

The articles [18], [14], [1], [2], [3], [12], [7], [8], [13], [4], [6], [9], [19], [11], [5], [10],

[15], [17], and [16] provide the notation and terminology for this paper.

1. Lemmas of Division

We adopt the following convention: x, y are real numbers, i, j, k are natural

numbers, and p, q are finite sequences of elements of R.

The following propositions are true:

(1) Let A be a closed-interval subset of R and D be an element of divsA. If

vol(A) 6= 0, then there exists i such that i ∈ domD and vol(divset(D, i)) >

0.

(2) Let A be a closed-interval subset of R, D be an element of divsA, and

given x. If x ∈ A, then there exists j such that j ∈ domD and x ∈

divset(D, j).

(3) Let A be a closed-interval subset of R and D1, D2 be elements of divsA.

Then there exists an element D of divsA such that D1 ¬ D and D2 ¬ D

and rngD = rngD1 ∪ rngD2.
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(4) Let A be a closed-interval subset of R and D, D1 be elements of divsA.

Suppose δ(D1) < min rng upper volume(χA,A, D). Let given x, y, i. If i ∈

domD1 and x ∈ rngD ∩ divset(D1, i) and y ∈ rngD ∩ divset(D1, i), then

x = y.

(5) For all p, q such that rng p = rng q and p is increasing and q is increasing

holds p = q.

(6) Let A be a closed-interval subset of R, D, D1 be elements of divsA, and

given i, j. Suppose D ¬ D1 and i ∈ domD and j ∈ domD and i ¬ j.

Then indx(D1, D, i) ¬ indx(D1, D, j) and indx(D1, D, i) ∈ domD1 and

indx(D1, D, j) ∈ domD1.

(7) Let A be a closed-interval subset of R, D, D1 be elements of divsA, and

given i, j. Suppose D ¬ D1 and i ∈ domD and j ∈ domD and i < j.

Then indx(D1, D, i) < indx(D1, D, j) and indx(D1, D, i) ∈ domD1 and

indx(D1, D, j) ∈ domD1.

(8) For every closed-interval subset A of R and for every element D of divsA

holds δD  0.

(9) LetA be a closed-interval subset of R, g be a partial function fromA to R,

D1, D2 be elements of divsA, and given x. Suppose x ∈ divset(D1, lenD1)

and lenD1  2 and D1 ¬ D2 and rngD2 = rngD1∪{x} and g is total and

bounded on A. Then
∑
lower volume(g,D2) −

∑
lower volume(g, D1) ¬

(sup rng g − inf rng g) · δ(D1).

(10) LetA be a closed-interval subset of R, g be a partial function fromA to R,

D1, D2 be elements of divsA, and given x. Suppose x ∈ divset(D1, lenD1)

and lenD1  2 and D1 ¬ D2 and rngD2 = rngD1∪{x} and g is total and

bounded on A. Then
∑
upper volume(g, D1)−

∑
upper volume(g,D2) ¬

(sup rng g − inf rng g) · δ(D1).

(11) Let A be a closed-interval subset of R, D be an element of divsA, r

be a real number, and i, j be natural numbers. Suppose i ∈ domD

and j ∈ domD and i ¬ j and r < (mid(D, i, j))(1). Then there exi-

sts a closed-interval subset B of R such that r = inf B and supB =

(mid(D, i, j))(lenmid(D, i, j)) and lenmid(D, i, j) = (j − i) + 1 and

mid(D, i, j) is a DivisionPoint of B.

(12) Let A be a closed-interval subset of R, f be a partial function

from A to R, D1, D2 be elements of divsA, and given x. Suppose

x ∈ divset(D1, lenD1) and vol(A) 6= 0 and D1 ¬ D2 and rngD2 =

rngD1 ∪ {x} and f is total and bounded on A and x > inf A. Then
∑
lower volume(f, D2)−

∑
lower volume(f, D1) ¬ (sup rng f− inf rng f) ·

δ(D1).

(13) Let A be a closed-interval subset of R, f be a partial function

from A to R, D1, D2 be elements of divsA, and given x. Suppose
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x ∈ divset(D1, lenD1) and vol(A) 6= 0 and D1 ¬ D2 and rngD2 =

rngD1 ∪ {x} and f is total and bounded on A and x > inf A. Then
∑
upper volume(f,D1)−

∑
upper volume(f, D2) ¬ (sup rng f−inf rng f)·

δ(D1).

(14) Let A be a closed-interval subset of R, D1, D2 be elements of

divsA, r be a real number, and i, j be natural numbers. Suppose

i ∈ domD1 and j ∈ domD1 and i ¬ j and D1 ¬ D2 and

r < (mid(D2, indx(D2, D1, i), indx(D2, D1, j)))(1). Then there exists a

closed-interval subset B of R and there exist elements M1, M2 of

divsB such that r = inf B and supB = M2(lenM2) and supB =

M1(lenM1) and M1 ¬ M2 and M1 = mid(D1, i, j) and M2 =

mid(D2, indx(D2, D1, i), indx(D2, D1, j)).

(15) Let A be a closed-interval subset of R, D be an element of divsA, and

given x. If x ∈ rngD, then D(1) ¬ x and x ¬ D(lenD).

(16) Let p be a finite sequence of elements of R and given i, j, k. Suppose p

is increasing and i ∈ dom p and j ∈ dom p and k ∈ dom p and p(i) ¬ p(k)

and p(k) ¬ p(j). Then p(k) ∈ rngmid(p, i, j).

(17) Let A be a closed-interval subset of R, f be a partial function from A to

R, D be an element of divsA, and given i. If f is total and bounded on A

and i ∈ domD, then inf rng(f↾ divset(D, i)) ¬ sup rng f.

(18) Let A be a closed-interval subset of R, f be a partial function from A to

R, D be an element of divsA, and given i. If f is total and bounded on A

and i ∈ domD, then sup rng(f↾ divset(D, i))  inf rng f.

2. Darboux’s Theorem

The following two propositions are true:

(19) Let A be a closed-interval subset of R, f be a partial function from A to

R, and T be a DivSequence of A. Suppose f is total and bounded on A and

δT is convergent to 0 and vol(A) 6= 0. Then lower sum(f, T ) is convergent

and lim lower sum(f, T ) = lower integral f.

(20) Let A be a closed-interval subset of R, f be a partial function from A

to R, and T be a DivSequence of A. Suppose f is total and bounded on

A and δT is convergent to 0 and vol(A) 6= 0. Then upper sum(f, T ) is

convergent and limupper sum(f, T ) = upper integral f.
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