# Darboux's Theorem 

Noboru Endou<br>Shinshu University<br>Nagano<br>Katsumi Wasaki<br>Shinshu University<br>Nagano<br>Yasunari Shidama<br>Shinshu University<br>Nagano

Summary. In this article, we have proved the Darboux's theorem. This theorem is important to prove the Riemann integrability. We can replace an upper bound and a lower bound of a function which is the definition of Riemann integration with convergence of sequence by Darboux's theorem.

MML Identifier: INTEGRA3.

The articles [18], [14], [1], [2], [3], [12], [7], [8], [13], [4], [6], [9], [19], [11], [5], [10], [15], [17], and [16] provide the notation and terminology for this paper.

## 1. Lemmas of Division

We adopt the following convention: $x, y$ are real numbers, $i, j, k$ are natural numbers, and $p, q$ are finite sequences of elements of $\mathbb{R}$.

The following propositions are true:
(1) Let $A$ be a closed-interval subset of $\mathbb{R}$ and $D$ be an element of divs $A$. If $\operatorname{vol}(A) \neq 0$, then there exists $i$ such that $i \in \operatorname{dom} D$ and $\operatorname{vol}(\operatorname{divset}(D, i))>$ 0.
(2) Let $A$ be a closed-interval subset of $\mathbb{R}, D$ be an element of $\operatorname{divs} A$, and given $x$. If $x \in A$, then there exists $j$ such that $j \in \operatorname{dom} D$ and $x \in$ $\operatorname{divset}(D, j)$.
(3) Let $A$ be a closed-interval subset of $\mathbb{R}$ and $D_{1}, D_{2}$ be elements of divs $A$. Then there exists an element $D$ of divs $A$ such that $D_{1} \leqslant D$ and $D_{2} \leqslant D$ and $\operatorname{rng} D=\operatorname{rng} D_{1} \cup \operatorname{rng} D_{2}$.
(4) Let $A$ be a closed-interval subset of $\mathbb{R}$ and $D, D_{1}$ be elements of $\operatorname{divs} A$. Suppose $\delta_{\left(D_{1}\right)}<$ min rng upper_volume $\left(\chi_{A, A}, D\right)$. Let given $x, y, i$. If $i \in$ $\operatorname{dom} D_{1}$ and $x \in \operatorname{rng} D \cap \operatorname{divset}\left(D_{1}, i\right)$ and $y \in \operatorname{rng} D \cap \operatorname{divset}\left(D_{1}, i\right)$, then $x=y$.
(5) For all $p, q$ such that $\operatorname{rng} p=\operatorname{rng} q$ and $p$ is increasing and $q$ is increasing holds $p=q$.
(6) Let $A$ be a closed-interval subset of $\mathbb{R}, D, D_{1}$ be elements of $\operatorname{divs} A$, and given $i, j$. Suppose $D \leqslant D_{1}$ and $i \in \operatorname{dom} D$ and $j \in \operatorname{dom} D$ and $i \leqslant j$. Then $\operatorname{indx}\left(D_{1}, D, i\right) \leqslant \operatorname{indx}\left(D_{1}, D, j\right)$ and $\operatorname{indx}\left(D_{1}, D, i\right) \in \operatorname{dom} D_{1}$ and $\operatorname{indx}\left(D_{1}, D, j\right) \in \operatorname{dom} D_{1}$.
(7) Let $A$ be a closed-interval subset of $\mathbb{R}, D, D_{1}$ be elements of $\operatorname{divs} A$, and given $i, j$. Suppose $D \leqslant D_{1}$ and $i \in \operatorname{dom} D$ and $j \in \operatorname{dom} D$ and $i<j$. Then $\operatorname{indx}\left(D_{1}, D, i\right)<\operatorname{indx}\left(D_{1}, D, j\right)$ and $\operatorname{indx}\left(D_{1}, D, i\right) \in \operatorname{dom} D_{1}$ and $\operatorname{indx}\left(D_{1}, D, j\right) \in \operatorname{dom} D_{1}$.
(8) For every closed-interval subset $A$ of $\mathbb{R}$ and for every element $D$ of divs $A$ holds $\delta_{D} \geqslant 0$.
(9) Let $A$ be a closed-interval subset of $\mathbb{R}, g$ be a partial function from $A$ to $\mathbb{R}$, $D_{1}, D_{2}$ be elements of divs $A$, and given $x$. Suppose $x \in \operatorname{divset}\left(D_{1}, \operatorname{len} D_{1}\right)$ and len $D_{1} \geqslant 2$ and $D_{1} \leqslant D_{2}$ and $\operatorname{rng} D_{2}=\operatorname{rng} D_{1} \cup\{x\}$ and $g$ is total and bounded on $A$. Then $\sum$ lower_volume $\left(g, D_{2}\right)-\sum$ lower_volume $\left(g, D_{1}\right) \leqslant$ (sup rng $g-\inf \operatorname{rng} g) \cdot \delta_{\left(D_{1}\right)}$.
(10) Let $A$ be a closed-interval subset of $\mathbb{R}, g$ be a partial function from $A$ to $\mathbb{R}$, $D_{1}, D_{2}$ be elements of divs $A$, and given $x$. Suppose $x \in \operatorname{divset}\left(D_{1}, \operatorname{len} D_{1}\right)$ and len $D_{1} \geqslant 2$ and $D_{1} \leqslant D_{2}$ and $\operatorname{rng} D_{2}=\operatorname{rng} D_{1} \cup\{x\}$ and $g$ is total and bounded on $A$. Then $\sum$ upper_volume $\left(g, D_{1}\right)-\sum$ upper_volume $\left(g, D_{2}\right) \leqslant$ $(\sup \operatorname{rng} g-\inf \operatorname{rng} g) \cdot \delta_{\left(D_{1}\right)}$.
(11) Let $A$ be a closed-interval subset of $\mathbb{R}, D$ be an element of $\operatorname{divs} A, r$ be a real number, and $i, j$ be natural numbers. Suppose $i \in \operatorname{dom} D$ and $j \in \operatorname{dom} D$ and $i \leqslant j$ and $r<(\operatorname{mid}(D, i, j))(1)$. Then there exists a closed-interval subset $B$ of $\mathbb{R}$ such that $r=\inf B$ and $\sup B=$ $(\operatorname{mid}(D, i, j))(\operatorname{len} \operatorname{mid}(D, i, j))$ and $\operatorname{len} \operatorname{mid}(D, i, j)=(j-i)+1$ and $\operatorname{mid}(D, i, j)$ is a DivisionPoint of $B$.
(12) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}, D_{1}, D_{2}$ be elements of $\operatorname{divs} A$, and given $x$. Suppose $x \in \operatorname{divset}\left(D_{1}\right.$, len $\left.D_{1}\right)$ and $\operatorname{vol}(A) \neq 0$ and $D_{1} \leqslant D_{2}$ and $\operatorname{rng} D_{2}=$ $\operatorname{rng} D_{1} \cup\{x\}$ and $f$ is total and bounded on $A$ and $x>\inf A$. Then $\sum$ lower_volume $\left(f, D_{2}\right)-\sum$ lower_volume $\left(f, D_{1}\right) \leqslant(\sup \operatorname{rng} f-\inf \operatorname{rng} f)$. $\delta_{\left(D_{1}\right)}$.
(13) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}, D_{1}, D_{2}$ be elements of $\operatorname{divs} A$, and given $x$. Suppose
$x \in \operatorname{divset}\left(D_{1}\right.$, len $\left.D_{1}\right)$ and $\operatorname{vol}(A) \neq 0$ and $D_{1} \leqslant D_{2}$ and $\operatorname{rng} D_{2}=$ $\operatorname{rng} D_{1} \cup\{x\}$ and $f$ is total and bounded on $A$ and $x>\inf A$. Then $\sum$ upper_volume $\left(f, D_{1}\right)-\sum$ upper_volume $\left(f, D_{2}\right) \leqslant(\sup \operatorname{rng} f-\inf \operatorname{rng} f)$. $\delta_{\left(D_{1}\right)}$.
(14) Let $A$ be a closed-interval subset of $\mathbb{R}, D_{1}, D_{2}$ be elements of $\operatorname{divs} A, r$ be a real number, and $i, j$ be natural numbers. Suppose $i \in \operatorname{dom} D_{1}$ and $j \in \operatorname{dom} D_{1}$ and $i \leqslant j$ and $D_{1} \leqslant D_{2}$ and $r<\left(\operatorname{mid}\left(D_{2}, \operatorname{indx}\left(D_{2}, D_{1}, i\right), \operatorname{indx}\left(D_{2}, D_{1}, j\right)\right)\right)(1)$. Then there exists a closed-interval subset $B$ of $\mathbb{R}$ and there exist elements $M_{1}, M_{2}$ of divs $B$ such that $r=\inf B$ and $\sup B=M_{2}\left(\operatorname{len} M_{2}\right)$ and $\sup B=$ $M_{1}\left(\operatorname{len} M_{1}\right)$ and $M_{1} \leqslant M_{2}$ and $M_{1}=\operatorname{mid}\left(D_{1}, i, j\right)$ and $M_{2}=$ $\operatorname{mid}\left(D_{2}, \operatorname{indx}\left(D_{2}, D_{1}, i\right), \operatorname{indx}\left(D_{2}, D_{1}, j\right)\right)$.
(15) Let $A$ be a closed-interval subset of $\mathbb{R}, D$ be an element of $\operatorname{divs} A$, and given $x$. If $x \in \operatorname{rng} D$, then $D(1) \leqslant x$ and $x \leqslant D(\operatorname{len} D)$.
(16) Let $p$ be a finite sequence of elements of $\mathbb{R}$ and given $i, j, k$. Suppose $p$ is increasing and $i \in \operatorname{dom} p$ and $j \in \operatorname{dom} p$ and $k \in \operatorname{dom} p$ and $p(i) \leqslant p(k)$ and $p(k) \leqslant p(j)$. Then $p(k) \in \operatorname{rng} \operatorname{mid}(p, i, j)$.
(17) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}, D$ be an element of $\operatorname{divs} A$, and given $i$. If $f$ is total and bounded on $A$ and $i \in \operatorname{dom} D$, then $\inf \operatorname{rng}(f \upharpoonright \operatorname{divset}(D, i)) \leqslant \sup \operatorname{rng} f$.
(18) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}, D$ be an element of divs $A$, and given $i$. If $f$ is total and bounded on $A$ and $i \in \operatorname{dom} D$, then sup $\operatorname{rng}(f \upharpoonright \operatorname{divset}(D, i)) \geqslant \inf \operatorname{rng} f$.

## 2. Darboux's Theorem

The following two propositions are true:
(19) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}$, and $T$ be a DivSequence of $A$. Suppose $f$ is total and bounded on $A$ and $\delta_{T}$ is convergent to 0 and $\operatorname{vol}(A) \neq 0$. Then lower_sum $(f, T)$ is convergent and lim lower_sum $(f, T)=$ lower_integral $f$.
(20) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}$, and $T$ be a DivSequence of $A$. Suppose $f$ is total and bounded on $A$ and $\delta_{T}$ is convergent to 0 and $\operatorname{vol}(A) \neq 0$. Then upper_sum $(f, T)$ is convergent and lim upper_sum $(f, T)=$ upper_integral $f$.

## References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[5] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in $\mathcal{E}^{2}$. Formalized Mathematics, 6(3):427-440, 1997.
[7] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
[8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191-196, 2001.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[11] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[13] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255-263, 1997.
[14] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[15] Piotr Rudnicki. The for (going up) macro instruction. Formalized Mathematics, 7(1):107114, 1998.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

