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Summary. The goal of this article is to prove a scalar multiplicity of
Riemann definite integral. Therefore, we defined a scalar product to the subset

of real space, and we proved some relating lemmas. At last, we proved a scalar

multiplicity of Riemann definite integral. As a result, a linearity of Riemann

definite integral was proven by unifying the previous article [7].

MML Identifier: INTEGRA2.

The papers [2], [6], [3], [7], [13], [1], [4], [14], [5], [8], [16], [12], [10], [11], [9], and

[15] provide the notation and terminology for this paper.

1. Lemmas of Finite Sequence

We adopt the following rules: r, x, y are real numbers, i, j are natural

numbers, and p is a finite sequence of elements of R.

The following proposition is true

(1) For every closed-interval subset A of R and for every x holds x ∈ A iff

inf A ¬ x and x ¬ supA.

Let I1 be a finite sequence of elements of R. We say that I1 is non-decreasing

if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let n be a natural number. Suppose n ∈ dom I1 and n+1 ∈ dom I1. Let

r, s be real numbers. If r = I1(n) and s = I1(n + 1), then r ¬ s.

One can verify that there exists a finite sequence of elements of R which is

non-decreasing.

The following three propositions are true:
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(2) Let p be a non-decreasing finite sequence of elements of R and given i,

j. If i ∈ dom p and j ∈ dom p and i ¬ j, then p(i) ¬ p(j).

(3) Let given p. Then there exists a non-decreasing finite sequence q of ele-

ments of R such that p and q are fiberwise equipotent.

(4) Let D be a non empty set, f be a finite sequence of elements of D, and

k1, k2, k3 be natural numbers. If 1 ¬ k1 and k3 ¬ len f and k1 ¬ k2 and

k2 < k3, then (mid(f, k1, k2))
amid(f, k2 + 1, k3) = mid(f, k1, k3).

2. Scalar Product of Real Subset

Let X be a subset of R and let r be a real number. The functor r ·X yields

a subset of R and is defined as follows:

(Def. 2) r ·X = {r · x : x ∈ X}.

The following propositions are true:

(5) Let X, Y be non empty sets and f be a partial function from X to R. If

f is upper bounded on X and Y ⊆ X, then f↾Y is upper bounded on Y .

(6) Let X, Y be non empty sets and f be a partial function from X to R.

If f is lower bounded on X and Y ⊆ X, then f↾Y is lower bounded on Y .

(7) For every non empty subset X of R holds r ·X is non empty.

(8) For every subset X of R holds r ·X = {r · x : x ∈ X}.

(9) For every non empty subset X of R such that X is upper bounded and

0 ¬ r holds r ·X is upper bounded.

(10) For every non empty subset X of R such that X is upper bounded and

r ¬ 0 holds r ·X is lower bounded.

(11) For every non empty subset X of R such that X is lower bounded and

0 ¬ r holds r ·X is lower bounded.

(12) For every non empty subset X of R such that X is lower bounded and

r ¬ 0 holds r ·X is upper bounded.

(13) For every non empty subset X of R such that X is upper bounded and

0 ¬ r holds sup(r ·X) = r · supX.

(14) For every non empty subset X of R such that X is upper bounded and

r ¬ 0 holds inf(r ·X) = r · supX.

(15) For every non empty subset X of R such that X is lower bounded and

0 ¬ r holds inf(r ·X) = r · infX.

(16) For every non empty subset X of R such that X is lower bounded and

r ¬ 0 holds sup(r ·X) = r · infX.
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3. Scalar Multiple of Integral

The following propositions are true:

(17) For every non empty set X and for every partial function f from X to

R such that f is total holds rng(r f) = r · rng f.

(18) For all non empty sets X, Z and for every partial function f from X to

R holds rng(r (f↾Z)) = r · rng(f↾Z).

(19) Let A be a closed-interval subset of R, f be a partial function from A

to R, and D be an element of divsA. If f is total and bounded on A and

r ­ 0, then (upper sum set r f)(D) ­ r · inf rng f · vol(A).

(20) Let A be a closed-interval subset of R, f be a partial function from A

to R, and D be an element of divsA. If f is total and bounded on A and

r ¬ 0, then (upper sum set r f)(D) ­ r · sup rng f · vol(A).

(21) Let A be a closed-interval subset of R, f be a partial function from A

to R, and D be an element of divsA. If f is total and bounded on A and

r ­ 0, then (lower sum set r f)(D) ¬ r · sup rng f · vol(A).

(22) Let A be a closed-interval subset of R, f be a partial function from A

to R, and D be an element of divsA. If f is total and bounded on A and

r ¬ 0, then (lower sum set r f)(D) ¬ r · inf rng f · vol(A).

(23) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, D be an element of S, and given i.

Suppose i ∈ Seg lenD and f is upper bounded on A and total and r ­ 0.

Then (upper volume(r f, D))(i) = r · (upper volume(f, D))(i).

(24) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, D be an element of S, and given i.

Suppose i ∈ Seg lenD and f is upper bounded on A and total and r ¬ 0.

Then (lower volume(r f, D))(i) = r · (upper volume(f, D))(i).

(25) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, D be an element of S, and given i.

Suppose i ∈ Seg lenD and f is lower bounded on A and total and r ­ 0.

Then (lower volume(r f, D))(i) = r · (lower volume(f,D))(i).

(26) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, D be an element of S, and given i.

Suppose i ∈ Seg lenD and f is lower bounded on A and total and r ¬ 0.

Then (upper volume(r f, D))(i) = r · (lower volume(f, D))(i).

(27) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D be an element of S. If f

is upper bounded on A and total and r ­ 0, then upper sum(r f, D) =

r · upper sum(f,D).
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(28) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D be an element of S. If f

is upper bounded on A and total and r ¬ 0, then lower sum(r f, D) =

r · upper sum(f, D).

(29) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D be an element of S. If f

is lower bounded on A and total and r ­ 0, then lower sum(r f,D) =

r · lower sum(f, D).

(30) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D be an element of S. If f

is lower bounded on A and total and r ¬ 0, then upper sum(r f, D) =

r · lower sum(f, D).

(31) Let A be a closed-interval subset of R and f be a partial function from

A to R. Suppose f is total and bounded on A and f is integrable on A.

Then r f is integrable on A and integral r f = r · integral f.

4. Monotoneity of Integral

One can prove the following propositions:

(32) Let A be a closed-interval subset of R and f be a partial function from

A to R. Suppose f is total and bounded on A and f is integrable on A

and for every x such that x ∈ A holds f(x) ­ 0. Then integral f ­ 0.

(33) Let A be a closed-interval subset of R and f , g be partial functions from

A to R. Suppose that

(i) f is total and bounded on A,

(ii) f is integrable on A,

(iii) g is total and bounded on A, and

(iv) g is integrable on A.

Then f − g is integrable on A and integral f − g = integral f − integral g.

(34) Let A be a closed-interval subset of R and f , g be partial functions from

A to R. Suppose that

(i) f is total and bounded on A,

(ii) f is integrable on A,

(iii) g is total and bounded on A,

(iv) g is integrable on A, and

(v) for every x such that x ∈ A holds f(x) ­ g(x).

Then integral f ­ integral g.
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5. Definition of Division Sequence

Next we state two propositions:

(35) Let A be a closed-interval subset of R and f be a partial function from

A to R. If f is total and bounded on A, then rng upper sum set f is lower

bounded.

(36) Let A be a closed-interval subset of R and f be a partial function from

A to R. If f is total and bounded on A, then rng lower sum set f is upper

bounded.

Let A be a closed-interval subset of R. A DivSequence of A is a function

from N into divsA.

Let A be a closed-interval subset of R and let T be a DivSequence of A. The

functor δT yielding a sequence of real numbers is defined by:

(Def. 3) For every i holds δT (i) = δT (i).

Let A be a closed-interval subset of R, let f be a partial function from A

to R, and let T be a DivSequence of A. The functor upper sum(f, T ) yields a

sequence of real numbers and is defined by:

(Def. 4) For every i holds (upper sum(f, T ))(i) = upper sum(f, T (i)).

The functor lower sum(f, T ) yields a sequence of real numbers and is defined as

follows:

(Def. 5) For every i holds (lower sum(f, T ))(i) = lower sum(f, T (i)).

The following propositions are true:

(37) Let A be a closed-interval subset of R and D1, D2 be elements of divsA.

If D1 ¬ D2, then for every j such that j ∈ domD2 there exists i such that

i ∈ domD1 and divset(D2, j) ⊆ divset(D1, i).

(38) For all finite non empty subsets X, Y of R such that X ⊆ Y holds

maxX ¬ maxY.

(39) For all finite non empty subsets X, Y of R such that there exists y such

that y ∈ Y and maxX ¬ y holds maxX ¬ maxY.

(40) For all closed-interval subsets A, B of R such that A ⊆ B holds vol(A) ¬

vol(B).

(41) For every closed-interval subset A of R and for all elements D1, D2 of

divsA such that D1 ¬ D2 holds δ(D1) ­ δ(D2).
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