# Scalar Multiple of Riemann Definite Integral 

Noboru Endou<br>Shinshu University<br>Nagano

Katsumi Wasaki<br>Shinshu University<br>Nagano

Yasunari Shidama<br>Shinshu University<br>Nagano


#### Abstract

Summary. The goal of this article is to prove a scalar multiplicity of Riemann definite integral. Therefore, we defined a scalar product to the subset of real space, and we proved some relating lemmas. At last, we proved a scalar multiplicity of Riemann definite integral. As a result, a linearity of Riemann definite integral was proven by unifying the previous article [7].


MML Identifier: INTEGRA2.

The papers [2], [6], [3], [7], [13], [1], [4], [14], [5], [8], [16], [12], [10], [11], [9], and [15] provide the notation and terminology for this paper.

## 1. Lemmas of Finite Sequence

We adopt the following rules: $r, x, y$ are real numbers, $i, j$ are natural numbers, and $p$ is a finite sequence of elements of $\mathbb{R}$.

The following proposition is true
(1) For every closed-interval subset $A$ of $\mathbb{R}$ and for every $x$ holds $x \in A$ iff $\inf A \leqslant x$ and $x \leqslant \sup A$.
Let $I_{1}$ be a finite sequence of elements of $\mathbb{R}$. We say that $I_{1}$ is non-decreasing if and only if the condition (Def. 1) is satisfied.
(Def. 1) Let $n$ be a natural number. Suppose $n \in \operatorname{dom} I_{1}$ and $n+1 \in \operatorname{dom} I_{1}$. Let $r, s$ be real numbers. If $r=I_{1}(n)$ and $s=I_{1}(n+1)$, then $r \leqslant s$.
One can verify that there exists a finite sequence of elements of $\mathbb{R}$ which is non-decreasing.

The following three propositions are true:
(2) Let $p$ be a non-decreasing finite sequence of elements of $\mathbb{R}$ and given $i$, $j$. If $i \in \operatorname{dom} p$ and $j \in \operatorname{dom} p$ and $i \leqslant j$, then $p(i) \leqslant p(j)$.
(3) Let given $p$. Then there exists a non-decreasing finite sequence $q$ of elements of $\mathbb{R}$ such that $p$ and $q$ are fiberwise equipotent.
(4) Let $D$ be a non empty set, $f$ be a finite sequence of elements of $D$, and $k_{1}, k_{2}, k_{3}$ be natural numbers. If $1 \leqslant k_{1}$ and $k_{3} \leqslant \operatorname{len} f$ and $k_{1} \leqslant k_{2}$ and $k_{2}<k_{3}$, then $\left(\operatorname{mid}\left(f, k_{1}, k_{2}\right)\right)^{\wedge} \operatorname{mid}\left(f, k_{2}+1, k_{3}\right)=\operatorname{mid}\left(f, k_{1}, k_{3}\right)$.

## 2. Scalar Product of Real Subset

Let $X$ be a subset of $\mathbb{R}$ and let $r$ be a real number. The functor $r \cdot X$ yields a subset of $\mathbb{R}$ and is defined as follows:
(Def. 2) $r \cdot X=\{r \cdot x: x \in X\}$.
The following propositions are true:
(5) Let $X, Y$ be non empty sets and $f$ be a partial function from $X$ to $\mathbb{R}$. If $f$ is upper bounded on $X$ and $Y \subseteq X$, then $f \upharpoonright Y$ is upper bounded on $Y$.
(6) Let $X, Y$ be non empty sets and $f$ be a partial function from $X$ to $\mathbb{R}$. If $f$ is lower bounded on $X$ and $Y \subseteq X$, then $f \upharpoonright Y$ is lower bounded on $Y$.
(7) For every non empty subset $X$ of $\mathbb{R}$ holds $r \cdot X$ is non empty.
(8) For every subset $X$ of $\mathbb{R}$ holds $r \cdot X=\{r \cdot x: x \in X\}$.
(9) For every non empty subset $X$ of $\mathbb{R}$ such that $X$ is upper bounded and $0 \leqslant r$ holds $r \cdot X$ is upper bounded.
(10) For every non empty subset $X$ of $\mathbb{R}$ such that $X$ is upper bounded and $r \leqslant 0$ holds $r \cdot X$ is lower bounded.
(11) For every non empty subset $X$ of $\mathbb{R}$ such that $X$ is lower bounded and $0 \leqslant r$ holds $r \cdot X$ is lower bounded.
(12) For every non empty subset $X$ of $\mathbb{R}$ such that $X$ is lower bounded and $r \leqslant 0$ holds $r \cdot X$ is upper bounded.
(13) For every non empty subset $X$ of $\mathbb{R}$ such that $X$ is upper bounded and $0 \leqslant r$ holds $\sup (r \cdot X)=r \cdot \sup X$.
(14) For every non empty subset $X$ of $\mathbb{R}$ such that $X$ is upper bounded and $r \leqslant 0$ holds $\inf (r \cdot X)=r \cdot \sup X$.
(15) For every non empty subset $X$ of $\mathbb{R}$ such that $X$ is lower bounded and $0 \leqslant r$ holds $\inf (r \cdot X)=r \cdot \inf X$.
(16) For every non empty subset $X$ of $\mathbb{R}$ such that $X$ is lower bounded and $r \leqslant 0$ holds $\sup (r \cdot X)=r \cdot \inf X$.

## 3. Scalar Multiple of Integral

The following propositions are true:
(17) For every non empty set $X$ and for every partial function $f$ from $X$ to $\mathbb{R}$ such that $f$ is total holds $\operatorname{rng}(r f)=r \cdot \operatorname{rng} f$.
(18) For all non empty sets $X, Z$ and for every partial function $f$ from $X$ to $\mathbb{R}$ holds $\operatorname{rng}(r(f \upharpoonright Z))=r \cdot \operatorname{rng}(f \upharpoonright Z)$.
(19) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}$, and $D$ be an element of divs $A$. If $f$ is total and bounded on $A$ and $r \geqslant 0$, then (upper_sum_set $r f)(D) \geqslant r \cdot \inf \operatorname{rng} f \cdot \operatorname{vol}(A)$.
(20) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}$, and $D$ be an element of divs $A$. If $f$ is total and bounded on $A$ and $r \leqslant 0$, then (upper_sum_set $r f)(D) \geqslant r \cdot \sup \operatorname{rng} f \cdot \operatorname{vol}(A)$.
(21) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}$, and $D$ be an element of divs $A$. If $f$ is total and bounded on $A$ and $r \geqslant 0$, then (lower_sum_set $r f)(D) \leqslant r \cdot \sup \operatorname{rng} f \cdot \operatorname{vol}(A)$.
(22) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}$, and $D$ be an element of divs $A$. If $f$ is total and bounded on $A$ and $r \leqslant 0$, then (lower_sum_set $r f)(D) \leqslant r \cdot \inf \operatorname{rng} f \cdot \operatorname{vol}(A)$.
(23) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}, S$ be a non empty Division of $A, D$ be an element of $S$, and given $i$. Suppose $i \in \operatorname{Seg}$ len $D$ and $f$ is upper bounded on $A$ and total and $r \geqslant 0$. Then (upper_volume $(r f, D))(i)=r \cdot($ upper_volume $(f, D))(i)$.
(24) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}, S$ be a non empty Division of $A, D$ be an element of $S$, and given $i$. Suppose $i \in \operatorname{Seg}$ len $D$ and $f$ is upper bounded on $A$ and total and $r \leqslant 0$. Then (lower_volume $(r f, D))(i)=r \cdot($ upper_volume $(f, D))(i)$.
(25) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}, S$ be a non empty Division of $A, D$ be an element of $S$, and given $i$. Suppose $i \in \operatorname{Seg}$ len $D$ and $f$ is lower bounded on $A$ and total and $r \geqslant 0$. Then $($ lower_volume $(r f, D))(i)=r \cdot($ lower_volume $(f, D))(i)$.
(26) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}, S$ be a non empty Division of $A, D$ be an element of $S$, and given $i$. Suppose $i \in \operatorname{Seg}$ len $D$ and $f$ is lower bounded on $A$ and total and $r \leqslant 0$. Then $($ upper_volume $(r f, D))(i)=r \cdot($ lower_volume $(f, D))(i)$.
(27) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}, S$ be a non empty Division of $A$, and $D$ be an element of $S$. If $f$ is upper bounded on $A$ and total and $r \geqslant 0$, then $\operatorname{upper} \_\operatorname{sum}(r f, D)=$ $r \cdot \operatorname{upper} \_\operatorname{sum}(f, D)$.
(28) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}, S$ be a non empty Division of $A$, and $D$ be an element of $S$. If $f$ is upper bounded on $A$ and total and $r \leqslant 0$, then lower_sum $(r f, D)=$ $r \cdot \operatorname{upper} \_\operatorname{sum}(f, D)$.
(29) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}, S$ be a non empty Division of $A$, and $D$ be an element of $S$. If $f$ is lower bounded on $A$ and total and $r \geqslant 0$, then $\operatorname{lower} \_\operatorname{sum}(r f, D)=$ $r \cdot$ lower_sum $(f, D)$.
(30) Let $A$ be a closed-interval subset of $\mathbb{R}, f$ be a partial function from $A$ to $\mathbb{R}, S$ be a non empty Division of $A$, and $D$ be an element of $S$. If $f$ is lower bounded on $A$ and total and $r \leqslant 0$, then $\operatorname{upper}_{-} \operatorname{sum}(r f, D)=$ $r \cdot$ lower_sum $(f, D)$.
(31) Let $A$ be a closed-interval subset of $\mathbb{R}$ and $f$ be a partial function from $A$ to $\mathbb{R}$. Suppose $f$ is total and bounded on $A$ and $f$ is integrable on $A$. Then $r f$ is integrable on $A$ and integral $r f=r$. integral $f$.

## 4. Monotoneity of Integral

One can prove the following propositions:
(32) Let $A$ be a closed-interval subset of $\mathbb{R}$ and $f$ be a partial function from $A$ to $\mathbb{R}$. Suppose $f$ is total and bounded on $A$ and $f$ is integrable on $A$ and for every $x$ such that $x \in A$ holds $f(x) \geqslant 0$. Then integral $f \geqslant 0$.
(33) Let $A$ be a closed-interval subset of $\mathbb{R}$ and $f, g$ be partial functions from $A$ to $\mathbb{R}$. Suppose that
(i) $f$ is total and bounded on $A$,
(ii) $f$ is integrable on $A$,
(iii) $g$ is total and bounded on $A$, and
(iv) $g$ is integrable on $A$.

Then $f-g$ is integrable on $A$ and integral $f-g=$ integral $f-$ integral $g$.
(34) Let $A$ be a closed-interval subset of $\mathbb{R}$ and $f, g$ be partial functions from $A$ to $\mathbb{R}$. Suppose that
(i) $f$ is total and bounded on $A$,
(ii) $f$ is integrable on $A$,
(iii) $g$ is total and bounded on $A$,
(iv) $g$ is integrable on $A$, and
(v) for every $x$ such that $x \in A$ holds $f(x) \geqslant g(x)$. Then integral $f \geqslant$ integral $g$.

## 5. Definition of Division Sequence

Next we state two propositions:
(35) Let $A$ be a closed-interval subset of $\mathbb{R}$ and $f$ be a partial function from $A$ to $\mathbb{R}$. If $f$ is total and bounded on $A$, then rng upper_sum_set $f$ is lower bounded.
(36) Let $A$ be a closed-interval subset of $\mathbb{R}$ and $f$ be a partial function from $A$ to $\mathbb{R}$. If $f$ is total and bounded on $A$, then rng lower_sum_set $f$ is upper bounded.
Let $A$ be a closed-interval subset of $\mathbb{R}$. A DivSequence of $A$ is a function from $\mathbb{N}$ into $\operatorname{divs} A$.

Let $A$ be a closed-interval subset of $\mathbb{R}$ and let $T$ be a DivSequence of $A$. The functor $\delta_{T}$ yielding a sequence of real numbers is defined by:
(Def. 3) For every $i$ holds $\delta_{T}(i)=\delta_{T(i)}$.
Let $A$ be a closed-interval subset of $\mathbb{R}$, let $f$ be a partial function from $A$ to $\mathbb{R}$, and let $T$ be a DivSequence of $A$. The functor upper_sum $(f, T)$ yields a sequence of real numbers and is defined by:
(Def. 4) For every $i$ holds (upper_sum $(f, T))(i)=\operatorname{upper} \_$sum $(f, T(i))$.
The functor lower_sum $(f, T)$ yields a sequence of real numbers and is defined as follows:
(Def. 5) For every $i$ holds (lower_sum $(f, T))(i)=\operatorname{lower} \_$sum $(f, T(i))$.
The following propositions are true:
(37) Let $A$ be a closed-interval subset of $\mathbb{R}$ and $D_{1}, D_{2}$ be elements of divs $A$. If $D_{1} \leqslant D_{2}$, then for every $j$ such that $j \in \operatorname{dom} D_{2}$ there exists $i$ such that $i \in \operatorname{dom} D_{1}$ and $\operatorname{divset}\left(D_{2}, j\right) \subseteq \operatorname{divset}\left(D_{1}, i\right)$.
(38) For all finite non empty subsets $X, Y$ of $\mathbb{R}$ such that $X \subseteq Y$ holds $\max X \leqslant \max Y$.
(39) For all finite non empty subsets $X, Y$ of $\mathbb{R}$ such that there exists $y$ such that $y \in Y$ and $\max X \leqslant y$ holds $\max X \leqslant \max Y$.
(40) For all closed-interval subsets $A, B$ of $\mathbb{R}$ such that $A \subseteq B$ holds $\operatorname{vol}(A) \leqslant$ $\operatorname{vol}(B)$.
(41) For every closed-interval subset $A$ of $\mathbb{R}$ and for all elements $D_{1}, D_{2}$ of $\operatorname{divs} A$ such that $D_{1} \leqslant D_{2}$ holds $\delta_{\left(D_{1}\right)} \geqslant \delta_{\left(D_{2}\right)}$.

## References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[5] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in $\mathcal{E}^{2}$. Formalized Mathematics, 6(3):427-440, 1997.
[6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[7] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[10] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[13] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Formalized Mathematics, 6(2):255-263, 1997.
[14] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167-172, 1996.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

