
FORMALIZED MATHEMATICS

Volume 9, Number 1, 2001

University of Białystok

Property of Complex Sequence and

Continuity of Complex Function

Takashi Mitsuishi

Shinshu University

Nagano

Katsumi Wasaki

Shinshu University

Nagano

Yasunari Shidama

Shinshu University

Nagano

Summary. This article introduces properties of complex sequence and
continuity of complex function. The first section shows convergence of complex
sequence and constant complex sequence. In the next section, definition of con-
tinuity of complex function and properties of continuous complex function are
shown.
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The papers [14], [8], [3], [1], [9], [10], [12], [4], [5], [2], [6], [15], [16], [7], [13], and

[11] provide the notation and terminology for this paper.

1. Complex Sequence

For simplicity, we adopt the following rules: n, m, k denote natural numbers,

x denotes a set, X, X1 denote sets, g, x0, x1, x2 denote elements of C, s1, s2,

s3, s4, s5, s6 denote complex sequences, Y denotes a subset of C, f , f1, f2, h,

h1, h2 denote partial functions from C to C, r, s denote real numbers, and N1

denotes an increasing sequence of naturals.

Let us consider h, s3. Let us assume that rng s3 ⊆ domh. The functor h · s3

yielding a complex sequence is defined by:

(Def. 1) h · s3 = (h qua function) ·(s3).

Let us consider f , x0. We say that f is continuous in x0 if and only if:

(Def. 2) x0 ∈ dom f and for every s1 such that rng s1 ⊆ dom f and s1 is conver-

gent and lim s1 = x0 holds f · s1 is convergent and fx0
= lim(f · s1).
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One can prove the following propositions:

(2)1 s4 = s5 − s6 iff for every n holds s4(n) = s5(n)− s6(n).

(3) rng(s3 ↑ n) ⊆ rng s3.

(4) If rng s3 ⊆ dom f, then s3(n) ∈ dom f.

(5) x ∈ rng s3 iff there exists n such that x = s3(n).

(6) s3(n) ∈ rng s3.

(7) If s4 is a subsequence of s3, then rng s4 ⊆ rng s3.

(8) If s4 is a subsequence of s3 and s3 is non-zero, then s4 is non-zero.

(9) (s4 + s5) N1 = s4 N1 + s5 N1 and (s4 − s5) N1 = s4 N1 − s5 N1 and

(s4 s5) N1 = s4 N1 (s5 N1).

(10) (g s3) N1 = g (s3 N1).

(11) (−s3) N1 = −s3 N1 and |s3| ·N1 = |s3 N1|.

(12) (s3 N1)
−1 = s3

−1 N1.

(13) (s4/s3) N1 = (s4 N1)/(s3 N1).

(14) If for every n holds s3(n) ∈ Y, then rng s3 ⊆ Y.

(15) If rng s3 ⊆ domh, then h · s3 = (h qua function) ·(s3).

(16) If rng s3 ⊆ dom f, then (f · s3)(n) = fs3(n).

(17) If rng s3 ⊆ dom f, then (f · s3) ↑ n = f · (s3 ↑ n).

(18) If rng s3 ⊆ domh1 ∩ domh2, then (h1 + h2) · s3 = h1 · s3 + h2 · s3 and

(h1 − h2) · s3 = h1 · s3 − h2 · s3 and (h1 h2) · s3 = (h1 · s3) (h2 · s3).

(19) If rng s3 ⊆ domh, then (g h) · s3 = g (h · s3).

(20) If rng s3 ⊆ domh, then −h · s3 = (−h) · s3.

(21) If rng s3 ⊆ dom( 1
h
), then h · s3 is non-zero.

(22) If rng s3 ⊆ dom( 1
h
), then 1

h
· s3 = (h · s3)

−1.

(23) If rng s3 ⊆ domh, then ℜ((h · s3) N1) = ℜ(h · (s3 N1)).

(24) If rng s3 ⊆ domh, then ℑ((h · s3) N1) = ℑ(h · (s3 N1)).

(25) If rng s3 ⊆ domh, then (h · s3) N1 = h · (s3 N1).

(26) If rng s4 ⊆ domh and s5 is a subsequence of s4, then h·s5 is a subsequence

of h · s4.

(27) If h is total, then (h · s3)(n) = hs3(n).

(28) If h is total, then h · (s3 ↑ n) = (h · s3) ↑ n.

(29) If h1 is total and h2 is total, then (h1 + h2) · s3 = h1 · s3 + h2 · s3 and

(h1 − h2) · s3 = h1 · s3 − h2 · s3 and (h1 h2) · s3 = (h1 · s3) (h2 · s3).

(30) If h is total, then (g h) · s3 = g (h · s3).

(31) If rng s3 ⊆ dom(h↾X), then (h↾X) · s3 = h · s3.

1The proposition (1) has been removed.
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(32) If rng s3 ⊆ dom(h↾X) and if rng s3 ⊆ dom(h↾Y ) or X ⊆ Y, then (h↾X) ·

s3 = (h↾Y ) · s3.

(33) If rng s3 ⊆ dom(h↾X) and h−1({0C}) = ∅, then ( 1
h
↾X) · s3 = ((h↾X) ·

s3)
−1.

Let f be a function. We say that f is constant if and only if:

(Def. 3) For all sets n1, n2 such that n1 ∈ dom f and n2 ∈ dom f holds f(n1) =

f(n2).

Let us consider s3. Let us observe that s3 is constant if and only if:

(Def. 4) There exists g such that for every n holds s3(n) = g.

Next we state a number of propositions:

(34) s3 is constant iff there exists g such that rng s3 = {g}.

(35) s3 is constant iff for every n holds s3(n) = s3(n + 1).

(36) s3 is constant iff for all n, k holds s3(n) = s3(n + k).

(37) s3 is constant iff for all n, m holds s3(n) = s3(m).

(38) s3 ↑ k is a subsequence of s3.

(39) If s4 is a subsequence of s3 and s3 is convergent, then s4 is convergent.

(40) If s4 is a subsequence of s3 and s3 is convergent, then lim s4 = lim s3.

(41) If s3 is convergent and there exists k such that for every n such that

k ¬ n holds s4(n) = s3(n), then s4 is convergent.

(42) If s3 is convergent and there exists k such that for every n such that

k ¬ n holds s4(n) = s3(n), then lim s3 = lim s4.

(43) If s3 is convergent, then s3 ↑ k is convergent and lim(s3 ↑ k) = lim s3.

(44) If s3 is convergent and there exists k such that s3 = s4 ↑ k, then s4 is

convergent.

(45) If s3 is convergent and there exists k such that s3 = s4 ↑k, then lim s4 =

lim s3.

(46) If s3 is convergent and lim s3 6= 0C, then there exists k such that s3 ↑ k

is non-zero.

(47) If s3 is convergent and lim s3 6= 0C, then there exists s4 which is a

subsequence of s3 and non-zero.

(48) If s3 is constant, then s3 is convergent.

(49) If s3 is constant and g ∈ rng s3 or s3 is constant and there exists n such

that s3(n) = g, then lim s3 = g.

(50) If s3 is constant, then for every n holds lim s3 = s3(n).

(51) If s3 is convergent and lim s3 6= 0C, then for every s4 such that s4 is a

subsequence of s3 and non-zero holds lim(s4
−1) = (lim s3)

−1.

(52) If s3 is constant and s4 is convergent, then lim(s3 + s4) = s3(0) + lim s4

and lim(s3 − s4) = s3(0) − lim s4 and lim(s4 − s3) = lim s4 − s3(0) and
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lim(s3 s4) = s3(0) · lim s4.

The scheme CompSeqChoice concerns and states that:

There exists s1 such that for every n holds P[n, s1(n)]

provided the following condition is satisfied:

• For every n there exists g such that P[n, g].

2. Continuity of Complex Sequence

We now state several propositions:

(53) f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and

(ii) for every s1 such that rng s1 ⊆ dom f and s1 is convergent and lim s1 =

x0 and for every n holds s1(n) 6= x0 holds f · s1 is convergent and fx0
=

lim(f · s1).

(54) f is continuous in x0 if and only if the following conditions are satisfied:

(i) x0 ∈ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for every

x1 such that x1 ∈ dom f and |x1 − x0| < s holds |fx1
− fx0

| < r.

(55) Suppose f1 is continuous in x0 and f2 is continuous in x0. Then f1 + f2

is continuous in x0 and f1− f2 is continuous in x0 and f1 f2 is continuous

in x0.

(56) If f is continuous in x0, then g f is continuous in x0.

(57) If f is continuous in x0, then −f is continuous in x0.

(58) If f is continuous in x0 and fx0
6= 0C, then 1

f
is continuous in x0.

(59) If f1 is continuous in x0 and (f1)x0
6= 0C and f2 is continuous in x0, then

f2

f1
is continuous in x0.

Let us consider f , X. We say that f is continuous on X if and only if:

(Def. 5) X ⊆ dom f and for every x0 such that x0 ∈ X holds f↾X is continuous

in x0.

One can prove the following propositions:

(60) Let given X, f . Then f is continuous on X if and only if the following

conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for every s1 such that rng s1 ⊆ X and s1 is convergent and lim s1 ∈ X

holds f · s1 is convergent and flim s1
= lim(f · s1).

(61) f is continuous on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for all x0, r such that x0 ∈ X and 0 < r there exists s such that 0 < s

and for every x1 such that x1 ∈ X and |x1− x0| < s holds |fx1
− fx0

| < r.
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(62) f is continuous on X iff f↾X is continuous on X.

(63) If f is continuous on X and X1 ⊆ X, then f is continuous on X1.

(64) If x0 ∈ dom f, then f is continuous on {x0}.

(65) Let given X, f1, f2. Suppose f1 is continuous on X and f2 is continuous

on X. Then f1 + f2 is continuous on X and f1 − f2 is continuous on X

and f1 f2 is continuous on X.

(66) Let given X, X1, f1, f2. Suppose f1 is continuous on X and f2 is continu-

ous on X1. Then f1 +f2 is continuous on X ∩X1 and f1−f2 is continuous

on X ∩X1 and f1 f2 is continuous on X ∩X1.

(67) For all g, X, f such that f is continuous on X holds g f is continuous

on X.

(68) If f is continuous on X, then −f is continuous on X.

(69) If f is continuous on X and f−1({0C}) = ∅, then 1
f
is continuous on X.

(70) If f is continuous on X and (f↾X)−1({0C}) = ∅, then 1
f
is continuous

on X.

(71) If f1 is continuous on X and f1
−1({0C}) = ∅ and f2 is continuous on X,

then f2

f1
is continuous on X.

(72) If f is total and for all x1, x2 holds fx1+x2
= fx1

+ fx2
and there exists

x0 such that f is continuous in x0, then f is continuous on C.

Let us consider X. We say that X is compact if and only if:

(Def. 6) For every s1 such that rng s1 ⊆ X there exists s2 such that s2 is a

subsequence of s1 and convergent and lim s2 ∈ X.

One can prove the following propositions:

(73) For every f such that dom f is compact and f is continuous on dom f

holds rng f is compact.

(74) If Y ⊆ dom f and Y is compact and f is continuous on Y , then f◦Y is

compact.
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