Predicate Calculus for Boolean Valued Functions. Part XII

Shunichi Kobayashi Ueda Multimedia Information Center Nagano

Summary. In this paper, we proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of ordinary predicate logic.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{BVFUNC24}.$

The terminology and notation used here are introduced in the following articles: [11], [4], [6], [1], [8], [7], [2], [3], [5], [12], [10], and [9].

1. Preliminaries

For simplicity, we adopt the following convention: Y is a non empty set, a is an element of BVF(Y), G is a subset of PARTITIONS(Y), A, B, C, D, E, F, J, M, N are partitions of Y, and x, x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , x_8 , x_9 are sets.

The following propositions are true:

(1) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then CompF $(A, G) = B \land C \land D \land E \land F \land J$.

(2) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$

> C 2001 University of Białystok ISSN 1426-2630

and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then CompF $(B, G) = A \land C \land D \land E \land F \land J$.

(3) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then CompF $(C, G) = A \land B \land D \land E \land F \land J$.

(4) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then CompF $(D, G) = A \land B \land C \land E \land F \land J$.

(5) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then CompF $(E, G) = A \land B \land C \land D \land F \land J$.

(6) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then CompF $(F, G) = A \land B \land C \land D \land E \land J$.

(7) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then CompF $(J, G) = A \land B \land C \land D \land E \land F$.

(8) Let A, B, C, D, E, F, J be sets, h be a function, and A', B', C', D', E', F', J' be sets. Suppose that
A ≠ B and A ≠ C and A ≠ D and A ≠ E and A ≠ F and A ≠ J and B ≠ C and B ≠ D and B ≠ E and B ≠ F and B ≠ J and C ≠ D and C ≠ E and C ≠ F and C ≠ J and D ≠ E and D ≠ F and D ≠ J and E ≠ F and E ≠ J and F ≠ J and h =

 $(B \mapsto B') + (C \mapsto C') + (D \mapsto D') + (E \mapsto E') + (F \mapsto F') + (J \mapsto J') + (A \mapsto A').$ Then h(A) = A' and h(B) = B' and h(C) = C' and h(D) = D'

and h(E) = E' and h(F) = F' and h(J) = J'.

(9) Let A, B, C, D, E, F, J be sets, h be a function, and A', B', C', D', E', F', J' be sets. Suppose that

 $A \neq B \text{ and } A \neq C \text{ and } A \neq D \text{ and } A \neq E \text{ and } A \neq F \text{ and } A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$ and $h = (B \mapsto B') + \cdot (C \mapsto C') + \cdot (D \mapsto D') + \cdot (E \mapsto E') + \cdot (F \mapsto F') + \cdot (J \mapsto J') + \cdot (A \mapsto A')$. Then dom $h = \{A, B, C, D, E, F, J\}$.

(10) Let A, B, C, D, E, F, J be sets, h be a function, and A', B', C', D', E', F', J' be sets. Suppose that $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$ and $h = (B \mapsto B') + (C \mapsto C') + (D \mapsto D') + (E \mapsto E') + (F \mapsto F') + (J \mapsto J') + \cdots$

 $(A \mapsto A')$. Then rng $h = \{h(A), h(B), h(C), h(D), h(E), h(F), h(J)\}.$

- (11) Let G be a subset of PARTITIONS(Y), A, B, C, D, E, F, J be partitions of Y, z, u be elements of Y, and h be a function. Suppose that G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then EqClass $(u, B \land C \land D \land E \land F \land J) \cap$ EqClass $(z, A) \neq \emptyset$.
- (12) Let G be a subset of PARTITIONS(Y), A, B, C, D, E, F, J be partitions of Y, and z, u be elements of Y. Suppose that G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$ and EqClass $(z, C \land D \land E \land F \land J) = EqClass(u, C \land D \land E \land F \land J)$. Then EqClass $(u, CompF(A, G)) \cap EqClass(z, CompF(B, G)) \neq \emptyset$.
- (13) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\text{CompF}(A, G) = B \land C \land D \land E \land F \land J \land M$.

(14) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$

and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\text{CompF}(B, G) = A \land C \land D \land E \land F \land J \land M$.

(15) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\text{CompF}(C, G) = A \land B \land D \land E \land F \land J \land M$.

(16) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then CompF $(D, G) = A \land B \land C \land E \land F \land J \land M$.

(17) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\text{CompF}(E, G) = A \land B \land C \land D \land F \land J \land M$.

(18) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\text{CompF}(F, G) = A \land B \land C \land D \land E \land J \land M$.

(19) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then CompF $(J, G) = A \land B \land C \land D \land E \land F \land M$.

(20) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then CompF $(M, G) = A \land B \land C \land D \land E \land F \land J$.

- (21) Let A, B, C, D, E, F, J, M be sets, h be a function, and A', B', C', D', E', F', J', M' be sets. Suppose that $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$ and $h = (B \mapsto B') + (C \mapsto C') + (D \mapsto D') + (E \mapsto E') + (F \mapsto F') + (J \mapsto J') + (M \mapsto M') + (A \mapsto A')$. Then h(A) = A' and h(B) = B' and h(C) = C'and h(D) = D' and h(E) = E' and h(F) = F' and h(J) = J' and h(M) = M'.
- (22) Let A, B, C, D, E, F, J, M be sets, h be a function, and A', B', C', D', E', F', J', M' be sets. Suppose that $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$ and $h = (B \mapsto B') + \cdot (C \mapsto C') + \cdot (D \mapsto D') + \cdot (E \mapsto E') + \cdot (F \mapsto F') + \cdot (J \mapsto J') + \cdot (M \mapsto M') + \cdot (A \mapsto A')$. Then dom $h = \{A, B, C, D, E, F, J, M\}$.
- (23) Let A, B, C, D, E, F, J, M be sets, h be a function, and A', B', C', D', E', F', J', M' be sets. Suppose that $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$ and $h = (B \mapsto B') + (C \mapsto C') + (D \mapsto D') + (E \mapsto E') + (F \mapsto F') + (J \mapsto J') + (M \mapsto M') + (A \mapsto A')$. Then rng $h = \{h(A), h(B), h(C), h(D), h(E), h(F), h(J), h(M)\}$.
- (24) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), A, B, C, D, E, F, J, M be partitions of Y, z, u be elements of Y, and h be a function. Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ J and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then EqClass $(u, B \land C \land D \land E \land F \land J \land M) \cap \text{EqClass}(z, A) \neq \emptyset$.

(25) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), A, B, C, D, E, F, J, M be partitions of Y, and z, u be elements of Y. Suppose that G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $F \neq M$ and $J \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$ and EqClass $(z, C \land D \land E \land F \land J \land M) =$ EqClass $(u, C \land D \land E \land F \land J \land M)$. Then EqClass $(u, \text{CompF}(A, G)) \cap$ EqClass $(z, \text{CompF}(B, G)) \neq \emptyset$.

The scheme UI10 deals with a set \mathcal{A} , a set \mathcal{B} , a set \mathcal{C} , a set \mathcal{D} , a set \mathcal{E} , a set \mathcal{F} , a set \mathcal{G} , a set \mathcal{H} , a set \mathcal{I} , a set \mathcal{I} , and and states that:

 $\mathcal{P}[\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}]$

provided the following condition is satisfied:

- For all sets x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , x_8 , x_9 , x_{10} holds $\mathcal{P}[x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}].$
- Let us consider $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9$.

The functor $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\}$ yielding a set is defined as follows:

(Def. 1) $x \in \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\}$ iff $x = x_1$ or $x = x_2$ or $x = x_3$ or $x = x_4$ or $x = x_5$ or $x = x_6$ or $x = x_7$ or $x = x_8$ or $x = x_9$.

We now state a number of propositions:

- (26) $x \in \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\}$ iff $x = x_1$ or $x = x_2$ or $x = x_3$ or $x = x_4$ or $x = x_5$ or $x = x_6$ or $x = x_7$ or $x = x_8$ or $x = x_9$.
- $(27) \quad \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\} = \{x_1\} \cup \{x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\}.$
- $(28) \quad \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\} = \{x_1, x_2\} \cup \{x_3, x_4, x_5, x_6, x_7, x_8, x_9\}.$
- $(29) \quad \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\} = \{x_1, x_2, x_3\} \cup \{x_4, x_5, x_6, x_7, x_8, x_9\}.$
- $(30) \quad \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\} = \{x_1, x_2, x_3, x_4\} \cup \{x_5, x_6, x_7, x_8, x_9\}.$
- $(31) \quad \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\} = \{x_1, x_2, x_3, x_4, x_5\} \cup \{x_6, x_7, x_8, x_9\}.$
- $(32) \quad \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\} = \{x_1, x_2, x_3, x_4, x_5, x_6\} \cup \{x_7, x_8, x_9\}.$
- $(33) \quad \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\} = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\} \cup \{x_8, x_9\}.$
- $(34) \quad \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\} = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\} \cup \{x_9\}.$
- (35) Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N be partitions of Y. Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq J$ and $C \neq M$ and $C \neq N$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $C \neq K$ and $C \neq M$ and $C \neq N$ and $C \neq K$ and $C \neq M$ and $C \neq K$ and $C \neq K$ and $C \neq M$ and $C \neq K$ and $C \neq K$ and $C \neq K$ and $C \neq M$ and $C \neq K$ and $K \neq K$. Then CompF $(A, G) = B \land C \land D \land K \land K \land K \land K$.

- (36) Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N be partitions of Y. Suppose that G is a coordinate and $G = \{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then CompF(B,G) = $A \wedge C \wedge D \wedge E \wedge F \wedge J \wedge M \wedge N$.
- (37) Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N be partitions of Y. Suppose that G is a coordinate and $G = \{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and

G is a coordinate and $G = \{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\text{CompF}(C, G) = A \land B \land D \land E \land F \land J \land M \land N$.

- (38) Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N be partitions of Y. Suppose that G is a coordinate and $G = \{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then CompF(D,G) = $A \land B \land C \land E \land F \land J \land M \land N$.
- (39) Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N be partitions of Y. Suppose that G is a coordinate and $G = \{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and

 $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\operatorname{CompF}(E, G) = A \land B \land C \land D \land F \land J \land M \land N$.

- (40) Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N be partitions of Y. Suppose that G is a coordinate and $G = \{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\text{CompF}(F, G) = A \land B \land C \land D \land E \land J \land M \land N$.
- (41) Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N be partitions of Y. Suppose that G is a coordinate and $G = \{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\text{CompF}(J, G) = A \land B \land C \land D \land E \land F \land M \land N$.
- (42) Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N be partitions of Y. Suppose that G is a coordinate and $G = \{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\operatorname{CompF}(M, G) = A \land B \land C \land D \land E \land F \land J \land N$.
- (43) Let G be a subset of PARTITIONS(Y) and A, B, C, D, E, F, J, M, N be partitions of Y. Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and

 $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\operatorname{CompF}(N, G) = A \land B \land C \land D \land E \land F \land J \land M$.

- (44) Let A, B, C, D, E, F, J, M, N be sets, h be a function, and A', B', C', D', E', F', J', M', N' be sets. Suppose that $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$ and $h = (B \mapsto B') + \cdot (C \mapsto C') + \cdot (D \mapsto D') + \cdot (E \mapsto E') + \cdot (F \mapsto F') + \cdot (J \mapsto J') + \cdot (M \mapsto M') + \cdot (N \mapsto M') + \cdot (A \mapsto A')$. Then h(A) = A' and h(B) = B' and h(C) = C' and h(D) = D' and h(E) = E' and h(F) = F' and h(J) = J'and h(M) = M' and h(N) = N'.
- (45) Let A, B, C, D, E, F, J, M, N be sets, h be a function, and A', B', C', D', E', F', J', M', N' be sets. Suppose that $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$ and $h = (B \mapsto B') + (C \mapsto C') + (D \mapsto D') + (E \mapsto E') + (F \mapsto F') + (J \mapsto J') + (M \mapsto M') + (N \mapsto N') + (A \mapsto A')$. Then dom $h = \{A, B, C, D, E, F, J, M, N\}$.
- (46) Let A, B, C, D, E, F, J, M, N be sets, h be a function, and A', B', C', D', E', F', J', M', N' be sets. Suppose that $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$ and $h = (B \mapsto B') + (C \mapsto C') + (D \mapsto D') + (E \mapsto E') + (F \mapsto F') + (J \mapsto J') + (M \mapsto M') + (N \mapsto N') + (A \mapsto A').$

Then rng $h = \{h(A), h(B), h(C), h(D), h(E), h(F), h(J), h(M), h(N)\}.$

(47) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), A,

B, C, D, E, F, J, M, N be partitions of Y, z, u be elements of Y, and h be a function. Suppose that

(48) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), A, B, C, D, E, F, J, M, N be partitions of Y, and z, u be elements of Y. Suppose that

 $\begin{array}{l} G \text{ is a coordinate and } G = \{A, B, C, D, E, F, J, M, N\} \text{ and } A \neq B \text{ and} \\ A \neq C \text{ and } A \neq D \text{ and } A \neq E \text{ and } A \neq F \text{ and } A \neq J \text{ and } A \neq M \text{ and} \\ A \neq N \text{ and } B \neq C \text{ and } B \neq D \text{ and } B \neq E \text{ and } B \neq F \text{ and } B \neq J \text{ and} \\ B \neq M \text{ and } B \neq N \text{ and } C \neq D \text{ and } C \neq E \text{ and } C \neq F \text{ and } C \neq J \text{ and} \\ C \neq M \text{ and } C \neq N \text{ and } D \neq E \text{ and } D \neq F \text{ and } D \neq J \text{ and } D \neq M \\ \text{and } D \neq N \text{ and } E \neq F \text{ and } E \neq J \text{ and } D \neq M \\ \text{and } D \neq N \text{ and } E \neq F \text{ and } E \neq J \text{ and } E \neq N \text{ and} \\ F \neq J \text{ and } F \neq M \text{ and } F \neq N \text{ and } F \neq M \text{ and } F \neq N \text{ and } H \neq N \text{ and} \\ F q C lass(z, C \land D \land E \land F \land J \land M \land N) = EqClass(u, C \land D \land E \land F \land J \land M \land N). \\ \text{Then } EqClass(u, CompF(A, G)) \cap EqClass(z, CompF(B, G)) \neq \emptyset. \end{array}$

2. Predicate Calculus

We now state a number of propositions:

(49) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\forall_{\forall_{a,A}G,B}G \Subset \forall_{\forall_{a,B}G,A}G$.

(50) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\forall_{\forall a,A}G,BG = \forall_{\forall a,B}G,AG$.

(51) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\exists_{\forall a, AG, B} G \Subset \forall_{\exists a, BG, A} G$.

(52) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\exists_{\exists_{a,B}G,A}G \Subset \exists_{\exists_{a,A}G,B}G$.

(53) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\exists_{\exists_{a,A}G,B}G = \exists_{\exists_{a,B}G,A}G$.

(54) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\forall_{\forall_{a,A}G,B}G \Subset \exists_{\forall_{a,B}G,A}G$.

(55) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\forall_{\forall_{a,A}G,B}G \Subset \exists_{\exists_{a,B}G,A}G$.

(56) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\forall_{\forall a,A}, G, B, G \Subset \forall_{\exists a,B}, G, A, G$.

(57) $\forall_{\exists_{a,A}G,B}G \Subset \exists_{\exists_{a,B}G,A}G.$

(58) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\exists_{\forall_{a,A}G,B}G \Subset \exists_{\exists_{a,B}G,A}G$.

(59) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\forall_{\forall_{a,A}G,B}G \Subset \forall_{\forall_{a,B}G,A}G$.

(60) Suppose that

 $G \text{ is a coordinate and } G = \{A, B, C, D, E, F, J, M\} \text{ and } A \neq B \text{ and } A \neq C \text{ and } A \neq D \text{ and } A \neq E \text{ and } A \neq F \text{ and } A \neq J \text{ and } A \neq M \text{ and } B \neq C \text{ and } B \neq D \text{ and } B \neq E \text{ and } B \neq F \text{ and } B \neq J \text{ and } B \neq M \text{ and } C \neq D \text{ and } C \neq E \text{ and } C \neq F \text{ and } C \neq J \text{ and } C \neq M \text{ and } D \neq F \text{ and } D \neq M \text{ and } E \neq F \text{ and } E \neq J \text{ and } E \neq M \text{ and } F \neq J \text{ and } F \neq M \text{ and } F \neq J \text{ and }$

(61) Suppose that

 $G \text{ is a coordinate and } G = \{A, B, C, D, E, F, J, M\} \text{ and } A \neq B \text{ and } A \neq C \text{ and } A \neq D \text{ and } A \neq E \text{ and } A \neq F \text{ and } A \neq J \text{ and } A \neq M \text{ and } B \neq C \text{ and } B \neq D \text{ and } B \neq E \text{ and } B \neq F \text{ and } B \neq J \text{ and } B \neq M \text{ and } C \neq D \text{ and } C \neq E \text{ and } C \neq F \text{ and } C \neq J \text{ and } C \neq M \text{ and } D \neq F \text{ and } D \neq F \text{ and } D \neq F \text{ and } D \neq M \text{ and } E \neq F \text{ and } E \neq J \text{ and } E \neq M \text{ and } F \neq J \text{ and }$

(62) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\exists_{\exists_{a,B}G,A}G \Subset \exists_{\exists_{a,A}G,B}G$.

(63) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\exists_{\exists_{a,A}G,B}G = \exists_{\exists_{a,B}G,A}G$.

(64) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\forall_{\forall_{a,A}G,B}G \Subset \exists_{\forall_{a,B}G,A}G$.

 $(66)^1$ Suppose that

 $G \text{ is a coordinate and } G = \{A, B, C, D, E, F, J, M\} \text{ and } A \neq B \text{ and } A \neq C \text{ and } A \neq D \text{ and } A \neq E \text{ and } A \neq F \text{ and } A \neq J \text{ and } A \neq M \text{ and } B \neq C \text{ and } B \neq D \text{ and } B \neq E \text{ and } B \neq F \text{ and } B \neq J \text{ and } B \neq M \text{ and } C \neq D \text{ and } C \neq E \text{ and } C \neq F \text{ and } C \neq J \text{ and } C \neq M \text{ and } D \neq F \text{ and } D \neq M \text{ and } E \neq F \text{ and } E \neq J \text{ and } E \neq M \text{ and } F \neq J \text{ and }$

(67) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\exists_{\forall_{a,A}G,B}G \Subset \exists_{\exists_{a,B}G,A}G$.

(68) Suppose that

 $\begin{array}{l} G \text{ is a coordinate and } G = \{A, B, C, D, E, F, J, M, N\} \text{ and } A \neq B \text{ and} \\ A \neq C \text{ and } A \neq D \text{ and } A \neq E \text{ and } A \neq F \text{ and } A \neq J \text{ and } A \neq M \text{ and} \\ A \neq N \text{ and } B \neq C \text{ and } B \neq D \text{ and } B \neq E \text{ and } B \neq F \text{ and } B \neq J \text{ and} \\ B \neq M \text{ and } B \neq N \text{ and } C \neq D \text{ and } C \neq E \text{ and } C \neq F \text{ and } C \neq J \text{ and} \\ C \neq M \text{ and } C \neq N \text{ and } D \neq E \text{ and } D \neq F \text{ and } D \neq M \text{ and } D \neq M \\ \text{and } D \neq N \text{ and } E \neq F \text{ and } E \neq J \text{ and } D \neq M \text{ and } F \neq M \text{ and } F \neq J \text{ and } F \neq M \text{ and } F \neq N \text{ and } F \neq J \text{ and } F$

(69) Suppose that

 $\begin{array}{l} G \text{ is a coordinate and } G = \{A, B, C, D, E, F, J, M, N\} \text{ and } A \neq B \text{ and} \\ A \neq C \text{ and } A \neq D \text{ and } A \neq E \text{ and } A \neq F \text{ and } A \neq J \text{ and } A \neq M \text{ and} \\ A \neq N \text{ and } B \neq C \text{ and } B \neq D \text{ and } B \neq E \text{ and } B \neq F \text{ and } B \neq J \text{ and} \\ B \neq M \text{ and } B \neq N \text{ and } C \neq D \text{ and } C \neq E \text{ and } C \neq F \text{ and } C \neq J \text{ and} \\ C \neq M \text{ and } C \neq N \text{ and } D \neq E \text{ and } D \neq F \text{ and } D \neq M \text{ and } D \neq M \\ \text{and } D \neq N \text{ and } E \neq F \text{ and } E \neq J \text{ and } D \neq M \\ \text{and } D \neq N \text{ and } E \neq F \text{ and } E \neq J \text{ and } E \neq N \text{ and } F \neq J \\ \text{and } F \neq M \text{ and } F \neq N \text{ and } J \neq M \text{ and } J \neq N \text{ and } F \neq J \\ \text{and } F \neq M \text{ and } F \neq N \text{ and } J \neq M \text{ and } J \neq N \text{ and } M \neq N. \\ \forall_{\forall_{a,A}G,B}G = \forall_{\forall_{a,B}G,A}G. \end{array}$

(70) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq J$ and $C \neq J$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq M$ and D = M and D = M and D = M

¹The proposition (65) has been removed.

and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\exists_{\forall_{a,A}G,B}G \Subset \forall_{\exists_{a,B}G,A}G$.

(71) Suppose that

 $G \text{ is a coordinate and } G = \{A, B, C, D, E, F, J, M, N\} \text{ and } A \neq B \text{ and } A \neq C \text{ and } A \neq D \text{ and } A \neq E \text{ and } A \neq F \text{ and } A \neq J \text{ and } A \neq M \text{ and } A \neq N \text{ and } B \neq C \text{ and } B \neq D \text{ and } B \neq E \text{ and } B \neq F \text{ and } B \neq J \text{ and } B \neq J \text{ and } B \neq M \text{ and } B \neq M \text{ and } C \neq D \text{ and } C \neq E \text{ and } C \neq F \text{ and } C \neq J \text{ and } C \neq J \text{ and } C \neq M \text{ and } C \neq M \text{ and } C \neq F \text{ and } C \neq J \text{ and } C \neq M \text{ an$

(72) Suppose that

 $\begin{array}{l} G \text{ is a coordinate and } G = \{A, B, C, D, E, F, J, M, N\} \text{ and } A \neq B \text{ and} \\ A \neq C \text{ and } A \neq D \text{ and } A \neq E \text{ and } A \neq F \text{ and } A \neq J \text{ and } A \neq M \text{ and} \\ A \neq N \text{ and } B \neq C \text{ and } B \neq D \text{ and } B \neq E \text{ and } B \neq F \text{ and } B \neq J \text{ and} \\ B \neq M \text{ and } B \neq N \text{ and } C \neq D \text{ and } C \neq E \text{ and } C \neq F \text{ and } C \neq J \text{ and} \\ C \neq M \text{ and } C \neq N \text{ and } D \neq E \text{ and } D \neq F \text{ and } D \neq M \text{ and } D \neq M \\ \text{and } D \neq N \text{ and } E \neq F \text{ and } E \neq J \text{ and } D \neq M \text{ and } F \neq J \text{ and } F \neq M \text{ and } F \neq N \text{ and } F \neq J \text{ and }$

(73) Suppose that

 $\begin{array}{l} G \text{ is a coordinate and } G = \{A, B, C, D, E, F, J, M, N\} \text{ and } A \neq B \text{ and} \\ A \neq C \text{ and } A \neq D \text{ and } A \neq E \text{ and } A \neq F \text{ and } A \neq J \text{ and } A \neq M \text{ and} \\ A \neq N \text{ and } B \neq C \text{ and } B \neq D \text{ and } B \neq E \text{ and } B \neq F \text{ and } B \neq J \text{ and} \\ B \neq M \text{ and } B \neq N \text{ and } C \neq D \text{ and } C \neq E \text{ and } C \neq F \text{ and } C \neq J \text{ and} \\ C \neq M \text{ and } C \neq N \text{ and } D \neq E \text{ and } D \neq F \text{ and } D \neq M \text{ and} \\ D \neq N \text{ and } E \neq F \text{ and } C \neq J \text{ and } D \neq F \text{ and } D \neq J \text{ and } D \neq M \\ \text{and } D \neq N \text{ and } E \neq F \text{ and } E \neq J \text{ and } E \neq N \text{ and } F \neq J \\ \text{and } F \neq M \text{ and } F \neq N \text{ and } J \neq M \text{ and } J \neq N \text{ and } F \neq J \\ \text{and } F \neq M \text{ and } F \neq N \text{ and } J \neq M \text{ and } J \neq N \text{ and } M \neq N. \text{ Then } \\ \forall_{\forall_{a,A}G,B}G \Subset \exists_{\forall_{a,B}G,A}G. \end{array}$

- (74) $\forall_{\forall_{a,A}G,B}G \Subset \exists_{\exists_{a,B}G,A}G.$
- (75) Suppose that

G is a coordinate and $G = \{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq J$ and $C \neq M$ and $C \neq N$ and $C \neq F$ and $C \neq J$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $C \neq K$ and $C \neq M$ and $C \neq N$ and $C \neq J$ and $C \neq M$ and $C \neq K$ and $C \neq N$ and $C \neq K$ and $C \neq M$ and $C \neq K$ and $K \neq$

(76) Suppose that

 $\begin{array}{l} G \text{ is a coordinate and } G = \{A, B, C, D, E, F, J, M, N\} \text{ and } A \neq B \text{ and} \\ A \neq C \text{ and } A \neq D \text{ and } A \neq E \text{ and } A \neq F \text{ and } A \neq J \text{ and } A \neq M \text{ and} \\ A \neq N \text{ and } B \neq C \text{ and } B \neq D \text{ and } B \neq E \text{ and } B \neq F \text{ and } B \neq J \text{ and} \\ B \neq M \text{ and } B \neq N \text{ and } C \neq D \text{ and } C \neq E \text{ and } C \neq F \text{ and } C \neq J \text{ and} \\ C \neq M \text{ and } C \neq N \text{ and } D \neq E \text{ and } D \neq F \text{ and } D \neq M \text{ and} \\ D \neq N \text{ and } E \neq F \text{ and } C \neq J \text{ and } D \neq F \text{ and } D \neq J \text{ and } D \neq M \text{ and } D \neq M \text{ and } F \neq M \text{ and } F \neq J \text{ and } F$

References

- [1] Czesław Byliński. A classical first order language. *Formalized Mathematics*, 1(4):669–676, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
 [9] C. B. D. B. Kichi, Theorem E. C. Martin, and the formation of the structure of
- [3] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
- [4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249–254, 1998.
- [5] Shunichi Kobayashi and Kui Jia. A theory of partitions. Part I. Formalized Mathematics, 7(2):243-247, 1998.
- [6] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. *Formalized Mathematics*, 7(2):307–312, 1998.
- [7] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [8] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [11] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
 [12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
- [12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received December 28, 1999