Predicate Calculus for Boolean Valued Functions. Part XII

Shunichi Kobayashi
Ueda Multimedia Information Center

Nagano

Abstract

Summary. In this paper, we proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of ordinary predicate logic.

MML Identifier: BVFUNC24.

The terminology and notation used here are introduced in the following articles: [11], [4], [6], [1], [8], [7], [2], [3], [5], [12], [10], and [9].

1. Preliminaries

For simplicity, we adopt the following convention: Y is a non empty set, a is an element of $\operatorname{BVF}(Y), G$ is a subset of PARTITIONS $(Y), A, B, C, D, E, F$, J, M, N are partitions of Y, and $x, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}$ are sets.

The following propositions are true:
(1) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\operatorname{CompF}(A, G)=B \wedge C \wedge D \wedge E \wedge F \wedge J$.
(2) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$
and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\operatorname{CompF}(B, G)=A \wedge C \wedge D \wedge E \wedge F \wedge J$.
(3) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\operatorname{CompF}(C, G)=A \wedge B \wedge D \wedge E \wedge F \wedge J$.
(4) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\operatorname{CompF}(D, G)=A \wedge B \wedge C \wedge E \wedge F \wedge J$.
(5) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\operatorname{CompF}(E, G)=A \wedge B \wedge C \wedge D \wedge F \wedge J$.
(6) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\operatorname{CompF}(F, G)=A \wedge B \wedge C \wedge D \wedge E \wedge J$.
(7) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\operatorname{CompF}(J, G)=A \wedge B \wedge C \wedge D \wedge E \wedge F$.
(8) Let A, B, C, D, E, F, J be sets, h be a function, and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, $E^{\prime}, F^{\prime}, J^{\prime}$ be sets. Suppose that
$A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$ and $h=$ $\left(B \longmapsto B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot\left(D \longmapsto D^{\prime}\right)+\cdot\left(E \longmapsto E^{\prime}\right)+\cdot\left(F \longmapsto F^{\prime}\right)+\cdot\left(J \longmapsto J^{\prime}\right)+\cdot$ $\left(A \longmapsto A^{\prime}\right)$. Then $h(A)=A^{\prime}$ and $h(B)=B^{\prime}$ and $h(C)=C^{\prime}$ and $h(D)=D^{\prime}$
and $h(E)=E^{\prime}$ and $h(F)=F^{\prime}$ and $h(J)=J^{\prime}$.
(9) Let A, B, C, D, E, F, J be sets, h be a function, and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, $E^{\prime}, F^{\prime}, J^{\prime}$ be sets. Suppose that
$A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$ and $h=$ $\left(B \longmapsto B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot(D \stackrel{\bullet}{\longmapsto})+\cdot\left(E \longmapsto E^{\prime}\right)+\cdot\left(F \longmapsto F^{\prime}\right)+\cdot\left(J \longmapsto J^{\prime}\right)+\cdot$ $\left(A \longmapsto A^{\prime}\right)$. Then $\operatorname{dom} h=\{A, B, C, D, E, F, J\}$.
(10) Let A, B, C, D, E, F, J be sets, h be a function, and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, $E^{\prime}, F^{\prime}, J^{\prime}$ be sets. Suppose that
$A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$ and $h=$ $\left(B \longmapsto B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot\left(D \longmapsto D^{\prime}\right)+\cdot\left(E \longmapsto E^{\prime}\right)+\cdot\left(F \longmapsto F^{\prime}\right)+\cdot\left(J \longmapsto J^{\prime}\right)+\cdot$ $\left(A \longmapsto A^{\prime}\right)$. Then rng $h=\{h(A), h(B), h(C), h(D), h(E), h(F), h(J)\}$.
(11) Let G be a subset of PARTITIONS $(Y), A, B, C, D, E, F, J$ be partitions of Y, z, u be elements of Y, and h be a function. Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then EqClass $(u, B \wedge C \wedge D \wedge E \wedge F \wedge J) \cap \operatorname{EqClass}(z, A) \neq \emptyset$.
(12) Let G be a subset of PARTITIONS $(Y), A, B, C, D, E, F, J$ be partitions of Y, and z, u be elements of Y. Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$ and $\operatorname{EqClass}(z, C \wedge D \wedge E \wedge F \wedge J)=\operatorname{EqClass}(u, C \wedge D \wedge E \wedge F \wedge J)$. Then $\operatorname{EqClass}(u, \operatorname{CompF}(A, G)) \cap \operatorname{EqClass}(z, \operatorname{CompF}(B, G)) \neq \emptyset$.
(13) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\operatorname{CompF}(A, G)=B \wedge C \wedge D \wedge E \wedge F \wedge J \wedge M$.
(14) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$
and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\operatorname{CompF}(B, G)=A \wedge C \wedge D \wedge E \wedge F \wedge J \wedge M$.
(15) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\operatorname{CompF}(C, G)=A \wedge B \wedge D \wedge E \wedge F \wedge J \wedge M$.
(16) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\operatorname{CompF}(D, G)=A \wedge B \wedge C \wedge E \wedge F \wedge J \wedge M$.
(17) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\operatorname{CompF}(E, G)=A \wedge B \wedge C \wedge D \wedge F \wedge J \wedge M$.
(18) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\operatorname{CompF}(F, G)=A \wedge B \wedge C \wedge D \wedge E \wedge J \wedge M$.
(19) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\operatorname{CompF}(J, G)=A \wedge B \wedge C \wedge D \wedge E \wedge F \wedge M$.
(20) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\operatorname{CompF}(M, G)=A \wedge B \wedge C \wedge D \wedge E \wedge F \wedge J$.
(21) Let A, B, C, D, E, F, J, M be sets, h be a function, and $A^{\prime}, B^{\prime}, C^{\prime}$, $D^{\prime}, E^{\prime}, F^{\prime}, J^{\prime}, M^{\prime}$ be sets. Suppose that
$A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$ and $h=$ $\left(B \longmapsto B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot\left(D \longmapsto D^{\prime}\right)+\cdot\left(E \longmapsto E^{\prime}\right)+\cdot\left(F \longmapsto F^{\prime}\right)+\cdot\left(J \longmapsto J^{\prime}\right)+\cdot$ $\left(M \longmapsto M^{\prime}\right)+\cdot\left(A \longmapsto A^{\prime}\right)$. Then $h(A)=A^{\prime}$ and $h(B)=B^{\prime}$ and $h(C)=C^{\prime}$ and $h(D)=D^{\prime}$ and $h(E)=E^{\prime}$ and $h(F)=F^{\prime}$ and $h(J)=J^{\prime}$ and $h(M)=M^{\prime}$.
(22) Let A, B, C, D, E, F, J, M be sets, h be a function, and $A^{\prime}, B^{\prime}, C^{\prime}$, $D^{\prime}, E^{\prime}, F^{\prime}, J^{\prime}, M^{\prime}$ be sets. Suppose that
$A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$ and $h=$ $\left(B \longmapsto B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot\left(D \longmapsto D^{\prime}\right)+\cdot\left(E \longmapsto E^{\prime}\right)+\cdot\left(F \longmapsto F^{\prime}\right)+\cdot\left(J \longmapsto J^{\prime}\right)+\cdot$ $\left(M \longmapsto M^{\prime}\right)+\cdot\left(A \longmapsto A^{\prime}\right)$. Then $\operatorname{dom} h=\{A, B, C, D, E, F, J, M\}$.
(23) Let A, B, C, D, E, F, J, M be sets, h be a function, and $A^{\prime}, B^{\prime}, C^{\prime}$, $D^{\prime}, E^{\prime}, F^{\prime}, J^{\prime}, M^{\prime}$ be sets. Suppose that
$A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$ and $h=$ $\left(B \longmapsto B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot\left(D \longmapsto D^{\prime}\right)+\cdot\left(E \longmapsto E^{\prime}\right)+\cdot\left(F \longmapsto F^{\prime}\right)+\cdot\left(J \longmapsto J^{\prime}\right)+\cdot$ $\left(M \longmapsto M^{\prime}\right)+\cdot\left(A \longmapsto A^{\prime}\right)$. Then rng $h=\{h(A), h(B), h(C), h(D), h(E), h(F)$, $h(J), h(M)\}$.
(24) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of $\operatorname{PARTITIONS}(Y), A$, B, C, D, E, F, J, M be partitions of Y, z, u be elements of Y, and h be a function. Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and
$B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq$ J and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then EqClass $(u, B \wedge C \wedge D \wedge E \wedge F \wedge J \wedge M) \cap \operatorname{EqClass}(z, A) \neq \emptyset$.
(25) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), A, B, C, D, E, F, J, M be partitions of Y, and z, u be elements of Y. Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$ and $\operatorname{EqClass}(z, C \wedge D \wedge E \wedge F \wedge J \wedge M)=$ $\operatorname{EqClass}(u, C \wedge D \wedge E \wedge F \wedge J \wedge M)$. Then $\operatorname{EqClass}(u, \operatorname{CompF}(A, G)) \cap$ $\operatorname{EqClass}(z, \operatorname{CompF}(B, G)) \neq \emptyset$.
The scheme $U I 10$ deals with a set \mathcal{A}, a set \mathcal{B}, a set \mathcal{C}, a set \mathcal{D}, a set \mathcal{E}, a set \mathcal{F}, a set \mathcal{G}, a set \mathcal{H}, a set \mathcal{I}, a set \mathcal{J}, and and states that:

$$
\mathcal{P}[\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}]
$$

provided the following condition is satisfied:

- For all sets $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}$
holds $\mathcal{P}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}\right]$.
Let us consider $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}$.
The functor $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right\}$ yielding a set is defined as follows:
(Def. 1) $x \in\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right\}$ iff $x=x_{1}$ or $x=x_{2}$ or $x=x_{3}$ or $x=x_{4}$ or $x=x_{5}$ or $x=x_{6}$ or $x=x_{7}$ or $x=x_{8}$ or $x=x_{9}$.
We now state a number of propositions:
(26) $\quad x \in\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right\}$ iff $x=x_{1}$ or $x=x_{2}$ or $x=x_{3}$ or $x=x_{4}$ or $x=x_{5}$ or $x=x_{6}$ or $x=x_{7}$ or $x=x_{8}$ or $x=x_{9}$.
(27) $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right\}=\left\{x_{1}\right\} \cup\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right\}$.
(35) Let G be a subset of PARTITIONS (Y) and $A, B, C, D, E, F, J, M, N$ be partitions of Y. Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\operatorname{CompF}(A, G)=B \wedge C \wedge D \wedge E \wedge F \wedge J \wedge M \wedge N$.
(36) Let G be a subset of $\operatorname{PARTITIONS}(Y)$ and $A, B, C, D, E, F, J, M, N$ be partitions of Y. Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\operatorname{CompF}(B, G)=A \wedge C \wedge D \wedge E \wedge F \wedge J \wedge M \wedge N$.
(37) Let G be a subset of $\operatorname{PARTITIONS}(Y)$ and $A, B, C, D, E, F, J, M, N$ be partitions of Y. Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\operatorname{CompF}(C, G)=A \wedge B \wedge D \wedge E \wedge F \wedge J \wedge M \wedge N$.
(38) Let G be a subset of $\operatorname{PARTITIONS}(Y)$ and $A, B, C, D, E, F, J, M, N$ be partitions of Y. Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\operatorname{CompF}(D, G)=A \wedge B \wedge C \wedge E \wedge F \wedge J \wedge M \wedge N$.
(39) Let G be a subset of $\operatorname{PARTITIONS}(Y)$ and $A, B, C, D, E, F, J, M, N$ be partitions of Y. Suppose that G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and
$A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\operatorname{CompF}(E, G)=A \wedge B \wedge C \wedge D \wedge F \wedge J \wedge M \wedge N$.
(40) Let G be a subset of $\operatorname{PARTITIONS}(Y)$ and $A, B, C, D, E, F, J, M, N$ be partitions of Y. Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\operatorname{CompF}(F, G)=A \wedge B \wedge C \wedge D \wedge E \wedge J \wedge M \wedge N$.
(41) Let G be a subset of $\operatorname{PARTITIONS}(Y)$ and $A, B, C, D, E, F, J, M, N$ be partitions of Y. Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\operatorname{CompF}(J, G)=A \wedge B \wedge C \wedge D \wedge E \wedge F \wedge M \wedge N$.
(42) Let G be a subset of $\operatorname{PARTITIONS}(Y)$ and $A, B, C, D, E, F, J, M, N$ be partitions of Y. Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\operatorname{CompF}(M, G)=A \wedge B \wedge C \wedge D \wedge E \wedge F \wedge J \wedge N$.
(43) Let G be a subset of $\operatorname{PARTITIONS}(Y)$ and $A, B, C, D, E, F, J, M, N$ be partitions of Y. Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and
$A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\operatorname{CompF}(N, G)=A \wedge B \wedge C \wedge D \wedge E \wedge F \wedge J \wedge M$.
(44) Let $A, B, C, D, E, F, J, M, N$ be sets, h be a function, and $A^{\prime}, B^{\prime}, C^{\prime}$, $D^{\prime}, E^{\prime}, F^{\prime}, J^{\prime}, M^{\prime}, N^{\prime}$ be sets. Suppose that
$A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq$ M and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$ and $h=$ $\left(B \longmapsto B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot\left(D \longmapsto D^{\prime}\right)+\cdot\left(E \longmapsto E^{\prime}\right)+\cdot\left(F \longmapsto F^{\prime}\right)+\cdot\left(J \longmapsto J^{\prime}\right)+\cdot$ $\left(M \longmapsto M^{\prime}\right)+\cdot\left(N \longmapsto N^{\prime}\right)+\cdot\left(A \longmapsto A^{\prime}\right)$. Then $h(A)=A^{\prime}$ and $h(B)=B^{\prime}$ and $h(C)=C^{\prime}$ and $h(D)=D^{\prime}$ and $h(E)=E^{\prime}$ and $h(F)=F^{\prime}$ and $h(J)=J^{\prime}$ and $h(M)=M^{\prime}$ and $h(N)=N^{\prime}$.
(45) Let $A, B, C, D, E, F, J, M, N$ be sets, h be a function, and $A^{\prime}, B^{\prime}, C^{\prime}$, $D^{\prime}, E^{\prime}, F^{\prime}, J^{\prime}, M^{\prime}, N^{\prime}$ be sets. Suppose that
$A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq$ M and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$ and $h=$ $\left(B \stackrel{\bullet}{ } B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot\left(D \stackrel{\bullet}{\longmapsto} D^{\prime}\right)+\cdot\left(E \longmapsto E^{\prime}\right)+\cdot\left(F \longmapsto F^{\prime}\right)+\cdot\left(J \longmapsto J^{\prime}\right)+\cdot$ $\left(M \longmapsto M^{\prime}\right)+\cdot\left(N \longmapsto N^{\prime}\right)+\cdot\left(A \longmapsto A^{\prime}\right)$.
Then $\operatorname{dom} h=\{A, B, C, D, E, F, J, M, N\}$.
(46) Let $A, B, C, D, E, F, J, M, N$ be sets, h be a function, and $A^{\prime}, B^{\prime}, C^{\prime}$, $D^{\prime}, E^{\prime}, F^{\prime}, J^{\prime}, M^{\prime}, N^{\prime}$ be sets. Suppose that
$A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq$ M and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$ and $h=$ $\left(B \longmapsto B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot\left(D \stackrel{\bullet}{ } D^{\prime}\right)+\cdot\left(E \longmapsto E^{\prime}\right)+\cdot\left(F \longmapsto F^{\prime}\right)+\cdot\left(J \longmapsto J^{\prime}\right)+\cdot$ $\left(M \stackrel{\bullet}{\longmapsto} M^{\prime}\right)+\cdot\left(N \longmapsto N^{\prime}\right)+\cdot\left(A \longmapsto A^{\prime}\right)$.
Then rng $h=\{h(A), h(B), h(C), h(D), h(E), h(F), h(J), h(M), h(N)\}$.
(47) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of $\operatorname{PARTITIONS}(Y), A$,
B, C, D, E, F, J, M, N be partitions of Y, z, u be elements of Y, and h be a function. Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\operatorname{EqClass}(u, B \wedge C \wedge D \wedge E \wedge F \wedge J \wedge M \wedge N) \cap \operatorname{EqClass}(z, A) \neq \emptyset$.
(48) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of $\operatorname{PARTITIONS}(Y), A$, B, C, D, E, F, J, M, N be partitions of Y, and z, u be elements of Y. Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$ and $\operatorname{EqClass}(z, C \wedge D \wedge E \wedge F \wedge J \wedge M \wedge N)=\operatorname{EqClass}(u, C \wedge D \wedge E \wedge F \wedge J \wedge M \wedge N)$. Then $\operatorname{EqClass}(u, \operatorname{CompF}(A, G)) \cap \operatorname{EqClass}(z, \operatorname{CompF}(B, G)) \neq \emptyset$.

2. Predicate Calculus

We now state a number of propositions:
(49) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\forall_{\forall_{a, A} G, B} G \Subset \forall_{\forall_{a, B} G, A} G$.
(50) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\forall_{\forall_{a, A} G, B} G=\forall_{\forall_{a, B} G, A} G$.
(51) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\exists_{\forall_{a, A} G, B} G \Subset \forall_{\exists_{a, B} G, A} G$.
(52) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\exists_{\exists a, B} G, A G \Subset \exists \exists_{a, A} G, B G$.
(53) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\exists_{\exists_{a, A} G, B} G=\exists_{\exists_{a, B} G, A} G$.
(54) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\forall_{\forall_{a, A} G, B} G \Subset \exists \forall_{a, B} G, A G$.
(55) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\forall_{\forall_{a, A} G, B} G \Subset \exists \exists_{a, B} G, A$.
(56) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$ and $F \neq J$. Then $\forall_{\forall_{a, A} G, B} G \Subset \forall_{\exists_{a, B} G, A} G$.

```
\forall\exists\mp@subsup{\exists}{a,A}{}G,B
```

(58) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $E \neq F$ and $E \neq J$
and $F \neq J$. Then $\exists \forall_{a, A} G, B G \Subset \exists_{\exists_{a, B} G, A} G$.
(59) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\forall_{\forall_{a, A} G, B} G \Subset \forall_{\forall_{a, B} G, A} G$.
(60) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$
and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\forall_{\forall_{a, A} G, B} G=\forall_{\forall_{a, B} G, A} G$.
(61) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\exists_{\forall_{a, A} G, B} G \Subset \forall_{\exists_{a, B} G, A} G$.
(62) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\exists_{\exists a, B} G, A G \Subset \exists_{\exists_{a, A} G, B} G$.
(63) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\exists_{\exists a, A} G, B=\exists_{\exists_{a, B} G, A} G$.
(64) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$
and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$
and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\forall_{\forall_{a, A} G, B} G \Subset \exists_{\forall_{a, B} G, A} G$.
$(66)^{1} \quad$ Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\forall_{\forall_{a, A} G, B} G \Subset \forall_{\exists_{a, B} G, A} G$.
(67) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $F \neq J$ and $F \neq M$ and $J \neq M$. Then $\exists \exists_{a, A} G, B G \Subset \exists_{\exists_{a, B} G, A} G$.
(68) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\forall_{\forall_{a, A} G, B} G \Subset \forall_{\forall_{a, B} G, A} G$.
(69) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\forall_{\forall_{a, A} G, B} G=\forall_{\forall_{a, B} G, A} G$.
(70) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$

[^0]and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\exists \forall_{a, A} G, B G \Subset \forall_{\exists_{a, B} G, A} G$.
(71) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\exists_{\exists_{a, B} G, A} G \Subset \exists_{\exists} \exists_{a, A} G, B G$.
(72) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\exists_{\exists_{a, A} G, B} G=\exists_{\exists} \exists_{a, B} G, A G$.
(73) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\forall_{\forall_{a, A} G, B} G \Subset \exists \exists_{a, B} G, A G$.
\[

$$
\begin{equation*}
\forall_{\forall_{a, A} G, B} G \Subset \exists_{\exists_{a, B} G, A} G \tag{74}
\end{equation*}
$$

\]

(75) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\forall \forall_{a, A} G, B G \Subset \forall_{\exists_{a, B} G, A} G$.
(76) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F, J, M, N\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $A \neq J$ and $A \neq M$ and $A \neq N$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $B \neq J$ and $B \neq M$ and $B \neq N$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $C \neq J$ and $C \neq M$ and $C \neq N$ and $D \neq E$ and $D \neq F$ and $D \neq J$ and $D \neq M$ and $D \neq N$ and $E \neq F$ and $E \neq J$ and $E \neq M$ and $E \neq N$ and $F \neq J$ and $F \neq M$ and $F \neq N$ and $J \neq M$ and $J \neq N$ and $M \neq N$. Then $\exists_{\forall_{a, A} G, B} G \Subset \exists_{\exists_{a, B} G, A} G$.

References

[1] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249-254, 1998.
[5] Shunichi Kobayashi and Kui Jia. A theory of partitions. Part I. Formalized Mathematics, $7(\mathbf{2}): 243-247,1998$.
[6] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. Formalized Mathematics, 7(2):307-312, 1998.
[7] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[8] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[11] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received December 28, 1999

[^0]: ${ }^{1}$ The proposition (65) has been removed.

