Six Variable Predicate Calculus for Boolean Valued Functions. Part I

Shunichi Kobayashi
Ueda Multimedia Information Center

Nagano

Abstract

Summary. In this paper, we proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of ordinary predicate logic.

MML Identifier: BVFUNC23.

The terminology and notation used in this paper are introduced in the following papers: [10], [4], [6], [1], [8], [7], [2], [3], [5], [11], and [9].

1. Preliminaries

For simplicity, we follow the rules: Y denotes a non empty set, a denotes an element of $\operatorname{BVF}(Y), G$ denotes a subset of PARTITIONS (Y), and A, B, C, D, E, F denote partitions of Y.

We now state a number of propositions:
(1) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\operatorname{CompF}(A, G)=B \wedge C \wedge D \wedge E \wedge F$.
(2) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\operatorname{CompF}(B, G)=A \wedge C \wedge D \wedge E \wedge F$.
(3) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\operatorname{CompF}(C, G)=A \wedge B \wedge D \wedge E \wedge F$.
(4) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\operatorname{CompF}(D, G)=A \wedge B \wedge C \wedge E \wedge F$.
(5) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\operatorname{CompF}(E, G)=A \wedge B \wedge C \wedge D \wedge F$.
(6) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\operatorname{CompF}(F, G)=A \wedge B \wedge C \wedge D \wedge E$.
(7) Let A, B, C, D, E, F be sets, h be a function, and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$, F^{\prime} be sets. Suppose that
$A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$ and $h=$ $\left(B \longmapsto B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot\left(D \longmapsto D^{\prime}\right)+\cdot\left(E \longmapsto E^{\prime}\right)+\cdot\left(F \longmapsto F^{\prime}\right)+\cdot\left(A \longmapsto A^{\prime}\right)$.
Then $h(A)=A^{\prime}$ and $h(B)=B^{\prime}$ and $h(C)=C^{\prime}$ and $h(D)=D^{\prime}$ and $h(E)=E^{\prime}$ and $h(F)=F^{\prime}$.
(8) Let A, B, C, D, E, F be sets, h be a function, and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$, F^{\prime} be sets. Suppose that
$A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$ and $h=$ $\left(B \longmapsto B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot\left(D \longmapsto D^{\prime}\right)+\cdot\left(E \longmapsto E^{\prime}\right)+\cdot\left(F \longmapsto F^{\prime}\right)+\cdot\left(A \longmapsto A^{\prime}\right)$.
Then $\operatorname{dom} h=\{A, B, C, D, E, F\}$.
(9) Let A, B, C, D, E, F be sets, h be a function, and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$, F^{\prime} be sets. Suppose that
$A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$ and $h=$ $\left(B \longmapsto B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot\left(D \longmapsto D^{\prime}\right)+\cdot\left(E \longmapsto E^{\prime}\right)+\cdot\left(F \longmapsto F^{\prime}\right)+\cdot\left(A \longmapsto A^{\prime}\right)$.

Then rng $h=\{h(A), h(B), h(C), h(D), h(E), h(F)\}$.
(10) Let G be a subset of PARTITIONS $(Y), A, B, C, D, E, F$ be partitions of Y, z, u be elements of Y, and h be a function. Suppose that G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\operatorname{EqClass}(u, B \wedge C \wedge D \wedge E \wedge F) \cap \operatorname{EqClass}(z, A) \neq \emptyset$.
(11) Let G be a subset of PARTITIONS $(Y), A, B, C, D, E, F$ be partitions of Y, z, u be elements of Y, and h be a function. Suppose that G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$ and $\operatorname{EqClass}(z, C \wedge D \wedge E \wedge F)=\operatorname{EqClass}(u, C \wedge D \wedge E \wedge F)$. Then $\operatorname{EqClass}(u, \operatorname{CompF}(A, G)) \cap \operatorname{EqClass}(z, \operatorname{CompF}(B, G)) \neq \emptyset$.

2. Predicate Calculus

The following propositions are true:
(12) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\forall_{\forall_{a, A} G, B} G \Subset \forall_{\forall_{a, B} G, A} G$.
(13) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\forall_{\forall_{a, A} G, B} G=\forall_{\forall_{a, B} G, A} G$.
(14) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\exists_{\forall_{a, A} G, B} G \Subset \exists_{\exists_{a, B} G, A} G$.
(15) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\exists_{\exists_{a, B} G, A} G \Subset \exists_{\exists_{a, A} G, B} G$.
(16) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\exists_{\exists_{a, A} G, B} G=\exists_{\exists a, B} G, A$.
(17) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\forall_{\forall_{a, A} G, B} G \Subset \exists \exists_{a, B} G, A G$.
(18) $\forall_{\forall_{a, A} G, B} G \Subset \exists \exists_{a, B} G, A G$.
(19) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\forall_{\forall_{a, A} G, B} G \Subset \forall_{\exists_{a, B} G, A} G$.
(20) $\forall_{\exists_{a, A} G, B} G \Subset \exists_{\exists_{a, B} G, A} G$.
(21) Suppose that
G is a coordinate and $G=\{A, B, C, D, E, F\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $A \neq E$ and $A \neq F$ and $B \neq C$ and $B \neq D$ and $B \neq E$ and $B \neq F$ and $C \neq D$ and $C \neq E$ and $C \neq F$ and $D \neq E$ and $D \neq F$ and $E \neq F$. Then $\exists_{\forall_{a, A} G, B} G \Subset \exists_{\exists_{a, B} G, A} G$.

References

[1] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249-254, 1998.
[5] Shunichi Kobayashi and Kui Jia. A theory of partitions. Part I. Formalized Mathematics, 7(2):243-247, 1998.
[6] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. Formalized Mathematics, 7(2):307-312, 1998.
[7] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[8] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[10] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[11] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

