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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to
partitions. Such a theory is an analogy of ordinary predicate logic.
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The terminology and notation used in this paper are introduced in the following

papers: [10], [4], [6], [1], [8], [7], [2], [3], [5], [11], and [9].

1. Preliminaries

For simplicity, we follow the rules: Y denotes a non empty set, a denotes an

element of BVF(Y ), G denotes a subset of PARTITIONS(Y ), and A, B, C, D,

E, F denote partitions of Y .

We now state a number of propositions:

(1) Suppose that

G is a coordinate and G = {A,B, C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then CompF(A,G) = B ∧ C ∧D ∧ E ∧ F.

(2) Suppose that

G is a coordinate and G = {A,B, C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then CompF(B, G) = A ∧ C ∧D ∧ E ∧ F.
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(3) Suppose that

G is a coordinate and G = {A,B,C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then CompF(C, G) = A ∧B ∧D ∧E ∧ F.

(4) Suppose that

G is a coordinate and G = {A,B,C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then CompF(D,G) = A ∧B ∧ C ∧ E ∧ F.

(5) Suppose that

G is a coordinate and G = {A,B,C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then CompF(E,G) = A ∧B ∧ C ∧D ∧ F.

(6) Suppose that

G is a coordinate and G = {A,B,C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then CompF(F,G) = A ∧B ∧ C ∧D ∧E.

(7) Let A, B, C, D, E, F be sets, h be a function, and A′, B′, C ′, D′, E′,

F ′ be sets. Suppose that

A 6= B and A 6= C and A 6= D and A 6= E and A 6= F and

B 6= C and B 6= D and B 6= E and B 6= F and C 6= D and

C 6= E and C 6= F and D 6= E and D 6= F and E 6= F and h =

(B 7−→. B′)+·(C 7−→. C ′)+·(D 7−→. D′)+·(E 7−→. E′)+·(F 7−→. F ′)+·(A7−→. A′).

Then h(A) = A′ and h(B) = B′ and h(C) = C ′ and h(D) = D′ and

h(E) = E′ and h(F ) = F ′.

(8) Let A, B, C, D, E, F be sets, h be a function, and A′, B′, C ′, D′, E′,

F ′ be sets. Suppose that

A 6= B and A 6= C and A 6= D and A 6= E and A 6= F and

B 6= C and B 6= D and B 6= E and B 6= F and C 6= D and

C 6= E and C 6= F and D 6= E and D 6= F and E 6= F and h =

(B 7−→. B′)+·(C 7−→. C ′)+·(D 7−→. D′)+·(E 7−→. E′)+·(F 7−→. F ′)+·(A7−→. A′).

Then domh = {A,B, C, D,E, F}.

(9) Let A, B, C, D, E, F be sets, h be a function, and A′, B′, C ′, D′, E′,

F ′ be sets. Suppose that

A 6= B and A 6= C and A 6= D and A 6= E and A 6= F and

B 6= C and B 6= D and B 6= E and B 6= F and C 6= D and

C 6= E and C 6= F and D 6= E and D 6= F and E 6= F and h =

(B 7−→. B′)+·(C 7−→. C ′)+·(D 7−→. D′)+·(E 7−→. E′)+·(F 7−→. F ′)+·(A7−→. A′).
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Then rng h = {h(A), h(B), h(C), h(D), h(E), h(F )}.

(10) Let G be a subset of PARTITIONS(Y ), A, B, C, D, E, F be partitions

of Y , z, u be elements of Y , and h be a function. Suppose that

G is a coordinate and G = {A,B, C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then EqClass(u,B ∧ C ∧D ∧ E ∧ F ) ∩ EqClass(z, A) 6= ∅.

(11) Let G be a subset of PARTITIONS(Y ), A, B, C, D, E, F be partitions

of Y , z, u be elements of Y , and h be a function. Suppose that

G is a coordinate and G = {A,B, C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F and EqClass(z, C ∧D∧E ∧F ) = EqClass(u,C ∧D∧E ∧F ). Then

EqClass(u,CompF(A,G)) ∩ EqClass(z,CompF(B, G)) 6= ∅.

2. Predicate Calculus

The following propositions are true:

(12) Suppose that

G is a coordinate and G = {A,B, C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then ∀∀a,AG,BG ⋐ ∀∀a,BG,AG.

(13) Suppose that

G is a coordinate and G = {A,B, C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then ∀∀a,AG,BG = ∀∀a,BG,AG.

(14) Suppose that

G is a coordinate and G = {A,B, C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then ∃∀a,AG,BG ⋐ ∀∃a,BG,AG.

(15) Suppose that

G is a coordinate and G = {A,B, C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then ∃∃a,BG,AG ⋐ ∃∃a,AG,BG.

(16) Suppose that
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G is a coordinate and G = {A,B,C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then ∃∃a,AG,BG = ∃∃a,BG,AG.

(17) Suppose that

G is a coordinate and G = {A,B,C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then ∀∀a,AG,BG ⋐ ∃∀a,BG,AG.

(18) ∀∀a,AG,BG ⋐ ∃∃a,BG,AG.

(19) Suppose that

G is a coordinate and G = {A,B,C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then ∀∀a,AG,BG ⋐ ∀∃a,BG,AG.

(20) ∀∃a,AG,BG ⋐ ∃∃a,BG,AG.

(21) Suppose that

G is a coordinate and G = {A,B,C, D,E, F} and A 6= B and A 6= C and

A 6= D and A 6= E and A 6= F and B 6= C and B 6= D and B 6= E and

B 6= F and C 6= D and C 6= E and C 6= F and D 6= E and D 6= F and

E 6= F. Then ∃∀a,AG,BG ⋐ ∃∃a,BG,AG.
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