Four Variable Predicate Calculus for Boolean Valued Functions. Part II

Shunichi Kobayashi Ueda Multimedia Information Center Nagano

Summary. In this paper, we proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of ordinary predicate logic.

MML Identifier: BVFUNC21.

The notation and terminology used here have been introduced in the following papers: [1], [2], [4], [3], and [5].

For simplicity, we use the following convention: Y is a non empty set, a is an element of BVF(Y), G is a subset of PARTITIONS(Y), and A, B, C, D are partitions of Y.

Next we state a number of propositions:

- (1) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \exists_{\exists_{a,A}G,B}G \Subset \exists_{\forall_{\neg a,B}G,A}G$.
- (2) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \exists_{\exists_{a,A}G,B}G \Subset$ $\forall_{\forall_{\neg_{a,B}G,A}G}$.
- (3) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\neg \exists_{a,A}G,B}G \Subset$ $\neg \exists_{\forall_{a,B}G,A}G$.
- (4) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset$ $\neg \exists_{\forall_{a,B}G,A}G$.

C 2001 University of Białystok ISSN 1426-2630

SHUNICHI KOBAYASHI

- (5) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset$ $\neg \forall_{\exists_{a,B}G,A}G$.
- (6) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset$ $\neg \exists_{\exists_{a,B}G,A}G$.
- (7) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\neg \forall_{a,A}G,B}G \Subset \exists_{\neg \forall_{a,B}G,A}G$.
- (8) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\neg\forall_{a,A}G,B}G \Subset \exists_{\neg\forall_{a,B}G,A}G$.
- (9) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\neg \exists_{a,A}G,B}G \Subset \exists_{\neg \forall_{a,B}G,A}G$.
- (10) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset \exists_{\neg \forall_{a,B}G,A}G$.
- (11) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\neg \exists_{a,A}G,B}G \Subset$ $\forall_{\neg \forall_{a,B}G,A}G$.
- (12) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset$ $\forall_{\neg \forall_{a,B}G,A}G$.
- (13) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset \exists_{\neg \exists_{a,B}G,A}G$.
- (14) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset$ $\forall_{\neg \exists_{a,B}G,A}G$.
- (15) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\neg \exists_{a,A}G,B}G \Subset$ $\exists_{\exists_{\neg a,B}G,A}G$.
- (16) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset \exists_{\exists_{\neg a,B}G,A}G$.
- (17) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\neg \exists_{a,A}G,B}G \Subset$ $\forall_{\exists_{\neg a,B}G,A}G$.
- (18) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$

168

and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset \forall_{\exists_{\neg a,B}G,A}G$.

- (19) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset \exists_{\forall_{\neg a,B}G,A}G$.
- (20) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset$ $\forall_{\forall_{\neg a,B}G,A}G$.
- (21) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\forall_{\neg a,A}G,B}G \Subset$ $\neg \exists_{\forall_{a,B}G,A}G$.
- (22) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall_{\neg a,A}G,B}G \Subset$ $\neg \exists_{\forall_{a,B}G,A}G$.
- (23) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall_{\neg a,A}G,B}G \Subset$ $\neg \forall_{\exists_{a,B}G,A}G$.
- (24) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall_{\neg a,A}G,B}G \Subset$ $\neg \exists_{\exists_{a,B}G,A}G$.
- (25) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\exists_{\neg a,A}G,B}G \Subset$ $\exists_{\neg \forall_{a,B}G,A}G$.
- (26) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\exists_{\neg a,A}G,B}G \Subset$ $\exists_{\neg\forall_{a,B}G,A}G$.
- (27) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\forall_{\neg a,A}G,B}G \Subset$ $\exists_{\neg\forall_{a,B}G,A}G$.
- (28) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall_{\neg a,A}G,B}G \Subset$ $\exists_{\neg\forall_{a,B}G,A}G$.
- (29) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\forall_{\neg a,A}G,B}G \Subset$ $\forall_{\neg\forall_{a,B}G,A}G$.
- (30) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall_{\neg a,A}G,B}G \Subset$ $\forall_{\neg\forall_{a,B}G,A}G$.
- (31) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall \neg a, AG, B}G \Subset$

 $\exists_{\neg \exists_{a,B}G,A}G.$

- (32) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall_{\neg a,A}G,B}G \Subset$ $\forall_{\neg \exists_{a,B}G,A}G$.
- (33) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\exists_{\neg a,A}G,B}G \Subset \exists_{\exists_{\neg a,B}G,A}G$.
- (34) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\exists_{\neg a,A}G,B}G \Subset \exists_{\exists_{\neg a,B}G,A}G$.
- (35) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\forall \neg a \ A} G, BG \Subset \exists_{\exists \neg a \ B} G, AG$.
- (36) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall \neg a, A} G, B} G \Subset \exists_{\exists \neg a, B} G, A} G$.
- (37) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\forall \neg a, A} G, B} G \Subset \forall_{\exists \neg a, B} G, AG$.
- (38) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall_{\neg a, A}G, B}G \Subset \forall_{\exists_{\neg a, B}G, A}G$.
- (39) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall \neg a \ A} G \Subset \exists_{\forall \neg a \ B} G \subseteq \exists_{\forall \neg a \ B} G.AG$.
- (40) If G is a coordinate and $G = \{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall \neg a, AG, B}G \Subset \forall_{\forall \neg a, BG, A}G$.

References

- Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249–254, 1998.
- [2] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. *Formalized Mathematics*, 7(2):307–312, 1998.
- [3] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [4] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received November 26, 1999