Four Variable Predicate Calculus for Boolean Valued Functions. Part I

Shunichi Kobayashi
Ueda Multimedia Information Center

Nagano

Abstract

Summary. In this paper, we proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of ordinary predicate logic.

MML Identifier: BVFUNC2O.

The terminology and notation used here have been introduced in the following articles: [10], [4], [6], [1], [8], [7], [2], [3], [5], [11], and [9].

1. Preliminaries

For simplicity, we follow the rules: Y is a non empty set, a is an element of $\operatorname{BVF}(Y), G$ is a subset of PARTITIONS (Y), and A, B, C, D are partitions of Y.

One can prove the following propositions:
(1) Let h be a function and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be sets. Suppose $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$ and $h=\left(B \longmapsto B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot\left(D \longmapsto D^{\prime}\right)+\cdot\left(A \longmapsto A^{\prime}\right)$. Then $h(A)=A^{\prime}$ and $h(B)=B^{\prime}$ and $h(C)=C^{\prime}$ and $h(D)=D^{\prime}$.
(2) Let A, B, C, D be sets, h be a function, and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be sets. If $h=\left(B \longmapsto B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot\left(D \longmapsto D^{\prime}\right)+\cdot\left(A \longmapsto A^{\prime}\right)$, then dom $h=$ $\{A, B, C, D\}$.
(3) For every function h and for all sets $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ such that $G=\{A, B, C, D\}$ and $h=\left(B \longmapsto B^{\prime}\right)+\cdot\left(C \longmapsto C^{\prime}\right)+\cdot\left(D \longmapsto D^{\prime}\right)+\cdot\left(A \longmapsto A^{\prime}\right)$ holds rng $h=\{h(A), h(B), h(C), h(D)\}$.
(4) Let z, u be elements of Y and h be a function. Suppose G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$. Then EqClass $(u, B \wedge C \wedge D) \cap \operatorname{EqClass}(z, A) \neq \emptyset$.
(5) Let z, u be elements of Y. Suppose G is a coordinate and $G=$ $\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$ and $\operatorname{EqClass}(z, C \wedge D)=\operatorname{EqClass}(u, C \wedge D)$. Then $\operatorname{EqClass}(u, \operatorname{CompF}(A, G)) \cap \operatorname{EqClass}(z, \operatorname{CompF}(B, G)) \neq \emptyset$.

2. Four Variable Predicate Calculus

Next we state a number of propositions:
(6) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall_{a, A} G, B} G \Subset \forall_{\forall_{a, B} G, A} G$.
(7) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall_{a, A} G, B} G=\forall_{\forall_{a, B} G, A} G$.
(8) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists \forall_{a, A} G, B G \Subset \forall_{\exists_{a, B} G, A} G$.
(9) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\exists \exists_{a, B} G, A} G \Subset \exists_{\exists_{a, A} G, B} G$.
(10) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\exists_{a, B} G, A} G=\exists_{\exists_{a, A} G, B} G$.
(11) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall_{a, A} G, B} G \Subset \exists \exists_{a, B} G, A G$.
(12) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall_{a, A} G, B} G \Subset \exists_{\exists_{a, B} G, A} G$.
(13) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\forall_{a, A} G, B} G \Subset \forall_{\exists_{a, B} G, A} G$.
(14) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\neg \forall_{a, A} G, B} G \Subset$ $\exists_{\exists_{\neg a, B} G, A} G$.
(15) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \forall_{\forall_{a, A} G, B} G \Subset$ $\exists_{\neg \forall_{a, B} G, A} G$.
(16) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\neg \forall_{a, A} G, B} G \Subset$ $\exists_{\exists_{\neg a, B} G, A} G$.
(17) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \forall_{\forall_{a, A} G, B} G \Subset$ $\exists_{\exists_{\neg a, B} G, A} G$.
(18) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall_{\neg \forall_{a, A} G, B} G \Subset$ $\neg \forall_{\forall_{a, B} G, A} G$.
(19) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\forall \exists_{\neg a, A} G, B G \Subset$ $\neg \forall_{\forall_{a, B} G, A} G$.
(20) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\rightarrow \forall_{a, A} G, B} G \Subset$ $\neg \forall_{\forall_{a, B} G, A} G$.
(21) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\forall_{\neg a, A} G, B} G \Subset$ $\neg \forall_{\forall_{a, B} G, A} G$.
(22) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\neg \exists_{a, A} G, B} G \Subset$ $\neg \forall_{\forall_{a, B} G, A} G$.
(23) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\exists_{\exists_{-a, A} G, B} G \Subset$ $\neg \forall_{\forall_{a, B} G, A} G$.
(24) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \forall_{\exists_{a, A} G, B} G \Subset$ $\neg \exists_{\forall_{a, B} G, A} G$.
(25) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \exists_{\exists_{a, A} G, B} G \Subset$ $\neg \exists_{\forall_{a, B} G, A} G$.
(26) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \exists_{\exists_{a, A} G, B} G \Subset \neg \exists_{\exists_{a, B} G, A} G$.
(27) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \forall_{\forall_{a, A} G, B} G \Subset \neg \forall_{\forall_{a, B} G, A} G$.
(28) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \exists_{\forall_{a, A} G, B} G \Subset$ $\neg \forall_{\forall_{a, B} G, A} G$.
(29) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \forall_{\exists_{a, A} G, B} G \Subset$ $\neg \forall_{\forall_{a, B} G, A} G$.
(30) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \exists_{\exists_{a, A} G, B} G \Subset$ $\neg \forall_{\forall_{a, B} G, A} G$.
(31) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \exists_{\forall_{a, A} G, B} G \Subset$ $\exists_{\neg \forall_{a, B} G, A} G$.
(32) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \forall_{\exists_{a, A} G, B} G \Subset$ $\exists_{\neg \forall_{a, B} G, A} G$.
(33) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \exists_{\exists_{a, A} G, B} G \Subset$ $\exists_{\neg \forall_{a, B} G, A} G$.
(34) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \forall_{\exists_{a, A} G, B} G \Subset$ $\forall_{\forall \forall_{a, B} G, A} G$.
(35) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \exists_{\exists_{a, A} G, B} G \Subset$ $\forall_{\neg \forall_{a, B} G, A} G$.
(36) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \exists_{\exists_{a, A} G, B} G \Subset$ $\exists_{\neg \exists_{a, B} G, A} G$.
(37) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \exists_{\exists_{a, A} G, B} G \Subset$ $\forall_{\neg_{a, B} G, A} G$.
(38) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \forall_{\exists_{a, A} G, B} G \Subset$ $\exists_{\exists_{\neg a, B} G, A} G$.
(39) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \exists_{\exists_{a, A} G, B} G \Subset$ $\exists_{\exists_{\neg a, B} G, A} G$.
(40) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \forall_{\exists_{a, A} G, B} G \Subset$ $\forall \exists_{-a, B} G, A G$.
(41) If G is a coordinate and $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$, then $\neg \exists_{\exists_{a, A} G, B} G \Subset$ $\forall \exists_{\neg a, B} G, A G$.

References

[1] Czesław Bylinski. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.

2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55$65,1990$.
[3] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249-254, 1998.
[5] Shunichi Kobayashi and Kui Jia. A theory of partitions. Part I. Formalized Mathematics, 7(2):243-247, 1998.
[6] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. Formalized Mathematics, 7(2):307-312, 1998.
[7] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[8] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[10] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[11] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received November 26, 1999

