Predicate Calculus for Boolean Valued Functions. Part XI

Shunichi Kobayashi Ueda Multimedia Information Center Nagano

Summary. In this paper, we proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC19.

The terminology and notation used in this paper have been introduced in the following articles: [1], [2], [3], [4], and [5].

For simplicity, we adopt the following rules: Y is a non empty set, a is an element of BVF(Y), G is a subset of PARTITIONS(Y), and A, B, C are partitions of Y.

One can prove the following propositions:

- (1) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\exists_{\neg \exists_{a,A}G,B}G \Subset \exists_{\exists_{\neg a,B}G,A}G$.
- (2) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset \exists_{\exists_{\neg a,B}G,A}G$.
- (3) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\exists_{\neg \exists_{a,A}G,B}G \Subset \forall_{\exists_{\neg a,B}G,A}G$.
- (4) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset \forall_{\exists_{\neg a,B}G,A}G$.
- (5) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset \exists_{\forall_{\neg a,B}G,A}G$.
- (6) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\neg \exists_{a,A}G,B}G \Subset \forall_{\forall_{\neg a,B}G,A}G$.

C 2001 University of Białystok ISSN 1426-2630

SHUNICHI KOBAYASHI

- (7) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\exists_{\forall_{\neg a,A}G,B}G \Subset \neg \exists_{\forall_{a,B}G,A}G$.
- (8) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\forall_{\neg a, A}G, B}G \Subset \neg \exists_{\forall_{a, B}G, A}G$.
- (9) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\forall_{\neg a, A}G, B}G \Subset \neg \forall_{\exists_{a, B}G, A}G$.
- (10) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\forall_{\neg a,A}G,B}G \Subset \neg \exists_{\exists_{a,B}G,A}G$.
- (11) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\exists_{\exists \neg a, AG, B}G \Subset \exists_{\neg \forall a, BG, A}G$.
- (12) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\exists \neg a, AG, B}G \Subset \exists \neg \forall_{a, BG, A}G$.
- (13) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\exists_{\forall_{\neg a, A}G, B}G \Subset \exists_{\neg \forall_{a, B}G, A}G$.
- (14) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\forall_{\neg a, A}G, B}G \Subset \exists_{\neg \forall_{a, B}G, A}G$.
- (15) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\exists_{\forall_{\neg a, A}G, B}G \Subset \forall_{\neg \forall_{a, B}G, A}G$.
- (16) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\forall_{\neg a, A}G, B}G \Subset \forall_{\neg \forall_{a, B}G, A}G$.
- (17) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\forall_{\neg a, A}G, B}G \Subset \exists_{\neg \exists_{a, B}G, A}G$.
- (18) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\forall_{\neg a, A}G, B}G \in \forall_{\neg \exists_{a, B}G, A}G$.
- (19) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\exists_{\exists_{\neg a, A}G, B}G \Subset \exists_{\exists_{\neg a, B}G, A}G$.
- (21)¹ If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\exists_{\forall_{\neg a, A}G, B}G \Subset \exists_{\exists_{\neg a, B}G, A}G$.
- (22) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\forall_{\neg a, A}G, B}G \Subset \exists_{\exists_{\neg a, B}G, A}G$.
- (23) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\exists_{\forall_{\neg a, A}G, B}G \Subset \forall_{\exists_{\neg a, B}G, A}G$.
- (24) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\forall_{\neg a,A}G,B}G \Subset \forall_{\exists_{\neg a,B}G,A}G$.
- (25) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\forall_{\neg a, A}G, B}G \Subset \exists_{\forall_{\neg a, B}G, A}G$.
- (26) If G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\forall_{\neg a, A}G, B}G \in \forall_{\forall_{\neg a, B}G, A}G$.

158

¹The proposition (20) has been removed.

References

- Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249–254, 1998.
- [2] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. *Formalized Mathematics*, 7(2):307–312, 1998.
- [3] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [4] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369–376, 1990.
- [5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received November 15, 1999