Predicate Calculus for Boolean Valued Functions. Part X

Shunichi Kobayashi
Ueda Multimedia Information Center

Nagano

Abstract

Summary. In this paper, we proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC18.

The notation and terminology used here are introduced in the following articles: [1], [2], [3], [4], and [5].

In this paper Y is a non empty set.
One can prove the following propositions:
(1) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \exists_{\exists_{a, A} G, B} G \Subset \exists \forall_{\neg a, B} G, A G$.
(2) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \exists_{\exists_{a, A} G, B} G \Subset \forall_{\forall_{\neg a, B} G, A} G$.
(3) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\neg \exists_{a, A} G, B} G \Subset \neg \exists_{\forall_{a, B} G, A} G$.
(4) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\neg \exists_{a, A} G, B} G \Subset \neg \exists_{\forall_{a, B} G, A} G$.
(5) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\neg \exists_{a, A} G, B} G \Subset \neg \forall_{\exists_{a, B} G, A} G$.
(6) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\neg \exists_{a, A} G, B} G \Subset \neg \exists_{\exists_{a, B} G, A} G$.
(7) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\neg \forall_{a, A} G, B} G \Subset \exists_{\neg \forall_{a, B} G, A} G$.
(8) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\neg \forall_{a, A} G, B} G \Subset \exists_{\neg \forall_{a, B} G, A} G$.
(9) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\neg \exists_{a, A} G, B} G \Subset \exists_{\neg \forall_{a, B} G, A} G$.
(10) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\neg \exists_{a, A} G, B} G \Subset \exists_{\neg \forall_{a, B} G, A} G$.
(11) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\neg \exists_{a, A} G, B} G \Subset \forall_{\neg \forall_{a, B} G, A} G$.
(12) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\neg \exists_{a, A} G, B} G \Subset \forall_{\neg \forall_{a, B} G, A} G$.
(13) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\neg \exists_{a, A} G, B} G \in \exists_{\neg \exists_{a, B} G, A} G$.
(14) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\neg \exists_{a, A} G, B} G \Subset \forall_{\neg \exists_{a, B} G, A} G$.

References

[1] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249-254, 1998.
[2] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. Formalized Mathematics, 7(2):307-312, 1998.
[3] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[4] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

