Predicate Calculus for Boolean Valued Functions. Part IX

Shunichi Kobayashi Ueda Multimedia Information Center Nagano

Summary. In this paper, we proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC17.

The terminology and notation used in this paper are introduced in the following papers: [1], [2], [3], [4], and [5].

In this paper Y is a non empty set.

The following propositions are true:

- (1) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \exists_{\exists_{a,A}G,B}G \in \neg \exists_{\exists_{a,B}G,A}G$.
- (3) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \exists_{\forall a,AG,B} G \in \neg \forall_{\forall a,BG,A} G$.
- (4) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \forall_{\exists_{a,A}G,B}G \subseteq \neg \forall_{\forall_{a,B}G,A}G$.
- (5) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \exists_{\exists a,AG,B} G \in \neg \forall_{\forall a,BG,A} G$.

- (6) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \exists_{\forall_{a,A}G,B}G \subseteq \exists_{\neg \forall_{a,B}G,A}G$.
- (7) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \forall_{\exists_{a,A}G,B}G \in \exists_{\neg \forall_{a,B}G,A}G$.
- (8) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \exists_{\exists_{a,A}G,B}G \subseteq \exists_{\neg \forall_{a,B}G,A}G$.
- (9) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \forall_{\exists_{a,A}G,B}G \subseteq \forall_{\neg \forall_{a,B}G,A}G$.
- (10) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \exists_{\exists_{a,A}G,B}G \subseteq \forall \neg \forall_{a,B}G,A}G$.
- (11) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \exists_{\exists_{a,A}G,B}G \subseteq \exists_{\neg \exists_{a,B}G,A}G$.
- (12) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \exists_{\exists a,AG,B} G \in \forall \neg \exists_{a,BG,A} G$.
- (13) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \forall \exists_{a,A}G,B}G \subseteq \exists_{\exists \neg a,B}G,A}G$.
- (14) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \exists_{\exists a, AG, B} G \subseteq \exists_{\exists \neg a, BG, A} G$.
- (15) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \forall \exists_{a,A} G, B G \subseteq \forall \exists_{\neg a,B} G, A G$.
- (16) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), and A, B, C be partitions of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \exists_{\exists a, AG,B} G \subseteq \forall_{\exists \neg a, BG,A} G$.

References

- [1] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249–254, 1998.
- [2] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. *Formalized Mathematics*, 7(2):307–312, 1998.
- [3] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.

- [4] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369–376, 1990.
 [5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received November 4, 1999