Predicate Calculus for Boolean Valued Functions. Part VIII

Shunichi Kobayashi Ueda Multimedia Information Center Nagano

Summary. In this paper, we proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of usual predicate logic.

 ${\rm MML}$ Identifier: BVFUNC16.

The terminology and notation used here are introduced in the following articles: [1], [2], [3], [4], and [5].

In this paper Y is a non empty set. We now state a number of propositions:

- (1) For every element a of BVF(Y) and for every subset G of PARTITIONS(Y) and for all partitions A, B of Y holds $\neg \exists_{\forall_{a,A}G,B}G \Subset \exists_{\exists_{\neg_a,B}G,A}G$.
- (2) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and *G* = {*A*, *B*, *C*} and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\neg \forall_{a,A}G,B}G \Subset \exists_{\exists_{\neg a,B}G,A}G$.
- (3) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and *G* = {*A*, *B*, *C*} and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \forall_{\forall_{a,A}G,B}G \Subset \exists_{\neg\forall_{a,B}G,A}G$.
- (4) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and *G* = {*A*, *B*, *C*} and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\neg\forall_{a,A}G,B}G \Subset \exists_{\exists_{\neg a,B}G,A}G$.
- (5) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \forall_{\forall a, AG, B} G \Subset \exists_{\exists \neg a, BG, A} G$.

© 2001 University of Białystok ISSN 1426-2630

SHUNICHI KOBAYASHI

- (6) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and *G* = {*A*, *B*, *C*} and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\neg \forall_{a,A}G,B}G \Subset \neg \forall_{\forall_{a,B}G,A}G$.
- (7) For every element a of BVF(Y) and for every subset G of PARTITIONS(Y) and for all partitions A, B, C of Y holds $\forall_{\forall_{\neg a,A}G,B}G \Subset \neg \forall_{\forall_{a,B}G,A}G$.
- (8) For every element a of BVF(Y) and for every subset G of PARTITIONS(Y) and for all partitions A, B, C of Y holds $\forall_{\neg \exists_{a,A}G,B}G \Subset \neg \forall_{\forall_{a,B}G,A}G$.
- (9) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\exists \neg a, AG, B}G \Subset \neg \forall_{\forall a, BG, A}G$.
- (10) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\neg \forall_{a,A}G,B}G \Subset \neg \forall_{\forall_{a,B}G,A}G$.
- (11) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\forall \neg a, AG, B} G \Subset \neg \forall_{\forall a, BG, A} G$.
- (12) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\neg \exists_{a,A}G,B}G \Subset \neg \forall_{\forall_{a,B}G,A}G$.
- (13) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\exists \neg a, AG, B}G \Subset \neg \forall_{\forall a, BG, A}G$.
- (14) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \forall_{\exists_{a,A}G,B}G \Subset \neg \exists_{\forall_{a,B}G,A}G$.
- (15) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\neg \exists_{\exists_{a,A}G,B}G \Subset \neg \exists_{\forall_{a,B}G,A}G$.
- (16) For every element a of BVF(Y) and for every subset G of PARTITIONS(Y) and for all partitions A, B, C of Y holds $\neg \exists_{\exists_{a,A}G,B}G \Subset \neg \forall_{\exists_{a,B}G,A}G$.

References

- Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249-254, 1998.
- [2] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. *Formalized Mathematics*, 7(2):307–312, 1998.
- [3] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.

128

- [4] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
 [5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Received November 4, 1999