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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to
partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC15.

The articles [6], [1], [2], [4], [3], and [5] provide the terminology and notation for

this paper.

In this paper Y is a non empty set.

Next we state a number of propositions:

(1) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ),

A, B, C be partitions of Y , and z, u be elements of Y . Suppose G is

a coordinate and G = {A,B, C} and A 6= B and B 6= C and C 6= A

and EqClass(z, C) = EqClass(u,C). Then EqClass(u,CompF(A,G)) ∩

EqClass(z,CompF(B, G)) 6= ∅.

(2) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A, B,C}

and A 6= B and B 6= C and C 6= A. Then ∃∀a,AG,BG ⋐ ∀∃a,BG,AG.

(3) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A, B,C}

and A 6= B and B 6= C and C 6= A. Then ∃∃a,AG,BG = ∃∃a,BG,AG.

(4) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A, B,C}

and A 6= B and B 6= C and C 6= A. Then ∀∀a,AG,BG ⋐ ∃∀a,BG,AG.
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(5) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A,B, C}

and A 6= B and B 6= C and C 6= A. Then ∀∀a,AG,BG ⋐ ∃∃a,BG,AG.

(6) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A,B, C}

and A 6= B and B 6= C and C 6= A. Then ∀∀a,AG,BG ⋐ ∀∃a,BG,AG.

(7) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A,B, C}

and A 6= B and B 6= C and C 6= A. Then ∀∃a,AG,BG ⋐ ∃∃a,BG,AG.

(8) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A,B, C}

and A 6= B and B 6= C and C 6= A. Then ∃∀a,AG,BG ⋐ ∃∃a,BG,AG.

(9) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A,B, C}

and A 6= B and B 6= C and C 6= A. Then ∃∀∀a,CG,AG,BG ⋐ ∀∃∀a,CG,BG,AG.

(10) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A,B, C}

and A 6= B and B 6= C and C 6= A. Then ∃∀∃a,CG,AG,BG ⋐ ∀∃∃a,CG,BG,AG.

(11) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A,B, C}

and A 6= B and B 6= C and C 6= A. Then ∃∃∀a,CG,AG,BG = ∃∃∀a,CG,BG,AG.

(12) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A,B, C}

and A 6= B and B 6= C and C 6= A. Then ∃∃∃a,CG,AG,BG = ∃∃∃a,CG,BG,AG.

(13) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A,B, C}

and A 6= B and B 6= C and C 6= A. Then ∀∀∀a,CG,AG,BG ⋐ ∃∀∀a,CG,BG,AG.

(14) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A,B, C}

and A 6= B and B 6= C and C 6= A. Then ∀∀∃a,CG,AG,BG ⋐ ∃∀∃a,CG,BG,AG.

(15) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A,B, C}

and A 6= B and B 6= C and C 6= A. Then ∀∀∀a,CG,AG,BG ⋐ ∃∃∀a,CG,BG,AG.

(16) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A,B, C}

and A 6= B and B 6= C and C 6= A. Then ∀∀∃a,CG,AG,BG ⋐ ∃∃∃a,CG,BG,AG.

(17) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A,B, C}

and A 6= B and B 6= C and C 6= A. Then ∀∀∀a,CG,AG,BG ⋐ ∀∃∀a,CG,BG,AG.
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(18) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A, B,C}

and A 6= B and B 6= C and C 6= A. Then ∀∀∃a,CG,AG,BG ⋐ ∀∃∃a,CG,BG,AG.

(19) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A, B,C}

and A 6= B and B 6= C and C 6= A. Then ∀∃∀a,CG,AG,BG ⋐ ∃∃∀a,CG,BG,AG.

(20) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A, B,C}

and A 6= B and B 6= C and C 6= A. Then ∀∃∃a,CG,AG,BG ⋐ ∃∃∃a,CG,BG,AG.

(21) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A, B,C}

and A 6= B and B 6= C and C 6= A. Then ∃∀∀a,CG,AG,BG ⋐ ∃∃∀a,CG,BG,AG.

(22) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B, C be partitions of Y . Suppose G is a coordinate and G = {A, B,C}

and A 6= B and B 6= C and C 6= A. Then ∃∀∃a,CG,AG,BG ⋐ ∃∃∃a,CG,BG,AG.
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