Predicate Calculus for Boolean Valued Functions. Part VII

Shunichi Kobayashi Ueda Multimedia Information Center Nagano

Summary. In this paper, we proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC15.

The articles [6], [1], [2], [4], [3], and [5] provide the terminology and notation for this paper.

In this paper Y is a non empty set.

Next we state a number of propositions:

- (1) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y), A, B, C be partitions of Y, and z, u be elements of Y. Suppose G is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$ and EqClass(z, C) = EqClass(u, C). Then $EqClass(u, CompF(A, G)) \cap EqClass(z, CompF(B, G)) \neq \emptyset$.
- (2) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and *G* = {*A*, *B*, *C*} and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\forall_{a,A}G,B}G \Subset \forall_{\exists_{a,B}G,A}G$.
- (3) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\exists_{a,A}G,B}G = \exists_{\exists_{a,B}G,A}G$.
- (4) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\forall_{a,A}G,B}G \Subset \exists_{\forall_{a,B}G,A}G$.

C 2001 University of Białystok ISSN 1426-2630

SHUNICHI KOBAYASHI

- (5) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and *G* = {*A*, *B*, *C*} and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\forall_{a,A}G,B}G \Subset \exists_{\exists_{a,B}G,A}G$.
- (6) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\forall_{a,A}G,B}G \Subset \forall_{\exists_{a,B}G,A}G$.
- (7) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and *G* = {*A*, *B*, *C*} and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\exists_{a,A}G,B}G \Subset \exists_{\exists_{a,B}G,A}G$.
- (8) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\forall_{a,A}G,B}G \Subset \exists_{\exists_{a,B}G,A}G$.
- (9) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and *G* = {*A*, *B*, *C*} and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\forall_{\forall_{a,C}G,A}G,B}G \Subset \forall_{\exists_{\forall_{a,C}G,B}G,A}G$.
- (10) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\forall \exists_{a,C}G,A}G,B}G \Subset \forall_{\exists \exists_{a,C}G,B}G,A}G$.
- (11) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\exists_{\forall_a \in G, A}G, B}G = \exists_{\exists_{\forall_a \in G}, B}G, A}G$.
- (12) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\exists_{a,C}G,A}G,B}G = \exists_{\exists_{a,C}G,B}G,A}G$.
- (13) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\forall_{\forall_a C}G, AG, B}G \Subset \exists_{\forall_{\forall_a C}G, B}G, AG$.
- (14) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\forall \exists_{a,C}G,A}G,B}G \Subset \exists_{\forall \exists_{a,C}G,B}G,A}G$.
- (15) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\forall_{\forall_{a} \in G, A}, G, B} G \in \exists_{\exists_{\forall_{a} \in G}, B}, G, A} G$.
- (16) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\forall \exists_{a,C}G,A}G,B}G \Subset \exists_{\exists_{a,C}G,B}G,A}G$.
- (17) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\forall_{\forall_{a} \in G, A}G, B}G \in \forall_{\exists_{\forall_{a} \in G}, B}G, AG$.

124

- (18) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\forall \exists_{a,C}G,A}G,B}G \Subset \forall_{\exists \exists_{a,C}G,B}G,A}G$.
- (19) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and *G* = {*A*, *B*, *C*} and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\exists_{\forall_{a,C}G,A}G,B}G \Subset \exists_{\exists_{\forall_{a,C}G,B}G,A}G$.
- (20) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\forall_{\exists_{\exists_{a,C}G,A}G,B}G \Subset \exists_{\exists_{a,C}G,B}G,A}G$.
- (21) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and *G* = {*A*, *B*, *C*} and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\forall_{\forall_{a,C}G,A}G,B}G \Subset \exists_{\exists_{\forall_{a,C}G,B}G,A}G$.
- (22) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B*, *C* be partitions of *Y*. Suppose *G* is a coordinate and $G = \{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\exists_{\forall \exists_a \in G, AG, B} G \Subset \exists_{\exists_a \in G, BG, A} G$.

References

- Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249–254, 1998.
- [2] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. *Formalized Mathematics*, 7(2):307–312, 1998.
- Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [4] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [6] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received October 19, 1999