Predicate Calculus for Boolean Valued Functions. Part VI

Shunichi Kobayashi
Ueda Multimedia Information Center

Nagano

Abstract

Summary. In this paper, we proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC14.

The articles [4], [6], [1], [8], [7], [2], [3], [5], [11], [10], and [9] provide the terminology and notation for this paper.

1. Preliminaries

In this paper Y denotes a non empty set.
We now state several propositions:
(1) For every element z of Y and for all partitions P_{1}, P_{2} of Y holds $\operatorname{EqClass}\left(z, P_{1} \wedge P_{2}\right)=\operatorname{EqClass}\left(z, P_{1}\right) \cap \operatorname{EqClass}\left(z, P_{2}\right)$.
(2) Let G be a subset of $\operatorname{PARTITIONS}(Y)$ and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$ and $A \neq B$, then $\bigwedge G=A \wedge B$.
(3) Let G be a subset of PARTITIONS (Y) and B, C, D be partitions of Y. Suppose G is a coordinate and $G=\{B, C, D\}$ and $B \neq C$ and $C \neq D$ and $D \neq B$. Then $\wedge G=B \wedge C \wedge D$.
(4) Let G be a subset of PARTITIONS (Y) and A, B, C be partitions of Y. Suppose G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$. Then $\operatorname{CompF}(A, G)=B \wedge C$ and $\operatorname{CompF}(B, G)=C \wedge A$ and $\operatorname{CompF}(C, G)=A \wedge B$.
(5) Let G be a subset of PARTITIONS (Y) and A, B, C, D be partitions of Y. Suppose $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$. Then $\operatorname{CompF}(A, G)=B \wedge C \wedge D$.
(6) Let G be a subset of PARTITIONS (Y) and A, B, C, D be partitions of Y. Suppose $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$. Then $\operatorname{CompF}(B, G)=A \wedge C \wedge D$.
(7) Let G be a subset of PARTITIONS (Y) and A, B, C, D be partitions of Y. Suppose $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$. Then $\operatorname{CompF}(C, G)=A \wedge B \wedge D$.
(8) Let G be a subset of PARTITIONS (Y) and A, B, C, D be partitions of Y. Suppose $G=\{A, B, C, D\}$ and $A \neq B$ and $A \neq C$ and $A \neq D$ and $B \neq C$ and $B \neq D$ and $C \neq D$. Then $\operatorname{CompF}(D, G)=A \wedge C \wedge B$.

2. Predicate Calculus

We adopt the following rules: a is an element of $\operatorname{BVF}(Y), G$ is a subset of PARTITIONS (Y), and A, B, C are partitions of Y.

One can prove the following propositions:
(9) If G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\forall_{a, A} G, B} G=\forall_{\forall_{a, B} G, A} G$.
(10) If G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\forall_{\forall_{a, C} G, A} G, B} G=\forall_{\forall_{\forall_{a, C} G, B} G, A} G$.
(11) If G is a coordinate and $G=\{A, B, C\}$ and $A \neq B$ and $B \neq C$ and $C \neq A$, then $\forall_{\forall_{\exists_{a, C} G, A} G, B} G=\forall_{\exists_{\exists_{a, C} G, B} G, A} G$.
(12) Let G be a subset of PARTITIONS $(Y), B, C, D$ be partitions of Y, h be a function, and b, c, d be sets. Suppose $B \neq C$ and $C \neq D$ and $D \neq B$ and $h=(B \longmapsto b)+\cdot(C \longmapsto c)+\cdot(D \longmapsto d)$. Then $\operatorname{dom} h=\{B, C, D\}$ and $h(B)=b$ and $h(C)=c$ and $h(D)=d$ and $\operatorname{rng} h=\{h(B), h(C), h(D)\}$.

References

[1] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249-254, 1998.
[5] Shunichi Kobayashi and Kui Jia. A theory of partitions. Part I. Formalized Mathematics, 7(2):243-247, 1998.
[6] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. Formalized Mathematics, 7(2):307-312, 1998.
[7] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[8] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[11] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received October 19, 1999

