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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to

partitions. Such a theory is an analogy of usual predicate logic.
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The articles [4], [6], [1], [8], [7], [2], [3], [5], [11], [10], and [9] provide the termi-

nology and notation for this paper.

1. Preliminaries

In this paper Y denotes a non empty set.

We now state several propositions:

(1) For every element z of Y and for all partitions P1, P2 of Y holds

EqClass(z, P1 ∧ P2) = EqClass(z, P1) ∩ EqClass(z, P2).

(2) Let G be a subset of PARTITIONS(Y ) and A, B be partitions of Y . If

G is a coordinate and G = {A,B} and A 6= B, then
∧

G = A ∧B.

(3) Let G be a subset of PARTITIONS(Y ) and B, C, D be partitions of Y .

Suppose G is a coordinate and G = {B,C, D} and B 6= C and C 6= D

and D 6= B. Then
∧

G = B ∧ C ∧D.

(4) Let G be a subset of PARTITIONS(Y ) and A, B, C be partitions of Y .

Suppose G is a coordinate and G = {A,B, C} and A 6= B and B 6= C

and C 6= A. Then CompF(A, G) = B ∧C and CompF(B,G) = C ∧A and

CompF(C, G) = A ∧B.
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(5) Let G be a subset of PARTITIONS(Y ) and A, B, C, D be partitions

of Y . Suppose G = {A,B,C, D} and A 6= B and A 6= C and A 6= D and

B 6= C and B 6= D and C 6= D. Then CompF(A,G) = B ∧ C ∧D.

(6) Let G be a subset of PARTITIONS(Y ) and A, B, C, D be partitions

of Y . Suppose G = {A,B,C, D} and A 6= B and A 6= C and A 6= D and

B 6= C and B 6= D and C 6= D. Then CompF(B,G) = A ∧ C ∧D.

(7) Let G be a subset of PARTITIONS(Y ) and A, B, C, D be partitions

of Y . Suppose G = {A,B,C, D} and A 6= B and A 6= C and A 6= D and

B 6= C and B 6= D and C 6= D. Then CompF(C, G) = A ∧B ∧D.

(8) Let G be a subset of PARTITIONS(Y ) and A, B, C, D be partitions

of Y . Suppose G = {A,B,C, D} and A 6= B and A 6= C and A 6= D and

B 6= C and B 6= D and C 6= D. Then CompF(D, G) = A ∧ C ∧B.

2. Predicate Calculus

We adopt the following rules: a is an element of BVF(Y ), G is a subset of

PARTITIONS(Y ), and A, B, C are partitions of Y .

One can prove the following propositions:

(9) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∀a,AG,BG = ∀∀a,BG,AG.

(10) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∀∀a,CG,AG,BG = ∀∀∀a,CG,BG,AG.

(11) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∀∃a,CG,AG,BG = ∀∀∃a,CG,BG,AG.

(12) Let G be a subset of PARTITIONS(Y ), B, C, D be partitions of Y , h

be a function, and b, c, d be sets. Suppose B 6= C and C 6= D and D 6= B

and h = (B 7−→. b)+·(C 7−→. c)+·(D 7−→. d). Then domh = {B, C, D} and

h(B) = b and h(C) = c and h(D) = d and rng h = {h(B), h(C), h(D)}.
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