Predicate Calculus for Boolean Valued Functions. Part IV

Shunichi Kobayashi
Shinshu University
Nagano

Yatsuka Nakamura
Shinshu University
Nagano

Abstract

Summary. In this paper, we proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC12.

The terminology and notation used in this paper are introduced in the following papers: [1], [2], [3], [5], and [4].

In this paper Y is a non empty set.
The following propositions are true:
(1) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\neg \forall_{\forall a, A} G, B G=$ $\exists_{\neg \forall_{a, A} G, B} G$.
(2) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\neg \exists_{\forall_{a, A} G, B} G=$ $\forall_{\neg \forall_{a, A} G, B} G$.
(3) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\forall_{\neg \forall_{a, A} G, B} G=$ $\forall_{\exists_{\neg a, A} G, B} G$.
(4) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\forall_{\neg \exists_{a, A} G, B} G=$ $\forall_{\forall \neg a, A} G, B G$.
(5) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\neg \forall_{\exists_{a, A} G, B} G=$ $\exists_{\forall_{\neg a, A} G, B} G$.
(6) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\neg \exists_{\forall_{a, A} G, B} G=$ $\forall \exists_{\neg a, A} G, B G$.
(7) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\neg \forall_{\forall_{a, A} G, B} G=$ $\exists_{\exists} \exists_{\neg, A} G, B G$.
(8) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\exists_{\neg \forall_{a, A} G, B} G=$ $\exists_{\exists} \exists_{a, A} G, B G$.
(9) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\exists_{\neg \exists_{a, A} G, B} G=$ $\exists_{\not \forall_{\neg, A} G, B} G$.
(10) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\neg \exists_{\exists_{a, A} G, B} G=$ $\forall_{\neg \exists_{a, A} G, B} G$.
(11) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS((Y), and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$ and $A \neq B$, then $\exists_{\forall_{a, A} G, B} G \Subset \exists_{\exists_{a, B} G, A} G$.
(12) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\forall_{\forall_{a, A} G, B} G \Subset$ $\forall \exists_{a, A} G, B G$.
(13) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\forall_{\forall_{a, A} G, B} G \Subset$ $\exists \forall_{a, A} G, B G$.
(14) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\forall_{\forall_{a, A} G, B} G \Subset$ $\exists_{\exists_{a, A} G, B} G$.
(15) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\forall_{\exists_{a, A} G, B} G \Subset$ $\exists_{\exists a, A} G, B G$.
(16) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\exists_{\forall_{a, A} G, B} G \Subset$ $\exists_{\exists a, A} G, B G$.

References

[1] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249-254, 1998.
[2] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. Formalized Mathematics, 7(2):307-312, 1998.
[3] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
[5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Received August 17, 1999

