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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to
partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC11.

The papers [8], [1], [3], [5], [2], [4], [7], and [6] provide the notation and termi-

nology for this paper.

1. Preliminaries

In this paper Y is a non empty set.

We now state several propositions:

(1) For every element z of Y and for all partitions P1, P2 of Y such that

P1 ⋐ P2 holds EqClass(z, P1) ⊆ EqClass(z, P2).

(2) For every element z of Y and for all partitions P1, P2 of Y holds

EqClass(z, P1) ⊆ EqClass(z, P1 ∨ P2).

(3) For every element z of Y and for all partitions P1, P2 of Y holds

EqClass(z, P1 ∧ P2) ⊆ EqClass(z, P1).

(4) For every element z of Y and for every partition P1 of Y

holds EqClass(z, P1) ⊆ EqClass(z,O(Y )) and EqClass(z, I(Y )) ⊆

EqClass(z, P1).
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(5) Let G be a subset of PARTITIONS(Y ) and A, B be partitions of Y .

Suppose G is an independent family of partitions and G = {A,B} and

A 6= B. Let a, b be sets. If a ∈ A and b ∈ B, then a ∩ b 6= ∅.

(6) Let G be a subset of PARTITIONS(Y ) and A, B be partitions of Y . If

G is a coordinate and G = {A,B} and A 6= B, then
∧

G = A ∧B.

(7) Let G be a subset of PARTITIONS(Y ) and A, B be partitions of Y . If

G is a coordinate and G = {A,B} and A 6= B, then CompF(A,G) = B

and CompF(B, G) = A.

2. Predicate Calculus

One can prove the following propositions:

(8) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∃∀a,AG,BG ⋐ ∀∃a,BG,AG.

(9) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ),

and A, B be partitions of Y . If G is a coordinate and G = {A,B}, then

∀∀a,AG,BG = ∀∀a,BG,AG.

(10) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ),

and A, B be partitions of Y . If G is a coordinate and G = {A,B}, then

∃∃a,AG,BG = ∃∃a,BG,AG.

(11) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∀∀a,AG,BG ⋐ ∃∀a,BG,AG.

(12) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∀∀a,AG,BG ⋐ ∃∃a,BG,AG.

(13) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∀∀a,AG,BG ⋐ ∀∃a,BG,AG.

(14) For every element a of BVF(Y ) and for every subset G of

PARTITIONS(Y ) and for all partitions A, B of Y holds ∀∃a,AG,BG ⋐

∃∃a,BG,AG.

(15) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ¬∃∀a,AG,BG ⋐ ∃∃
¬a,BG,AG.

(16) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A,B} and A 6= B,

then ∃¬∀a,AG,BG ⋐ ∃∃
¬a,BG,AG.
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(17) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ¬∀∀a,AG,BG ⋐ ∃¬∀a,BG,AG.

(18) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ∀¬∀a,AG,BG ⋐ ∃∃
¬a,BG,AG.

(19) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ¬∀∀a,AG,BG ⋐ ∃∃
¬a,BG,AG.

(20) Let a be an element of BVF(Y ), G be a subset of PARTITIONS(Y ), and

A, B be partitions of Y . If G is a coordinate and G = {A, B} and A 6= B,

then ¬∀∀a,AG,BG ⋐ ∃∃
¬a,AG,BG.
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