Predicate Calculus for Boolean Valued Functions. Part III

Shunichi Kobayashi
Shinshu University
Nagano

Yatsuka Nakamura
Shinshu University
Nagano

Abstract

Summary. In this paper, we proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC11.

The papers [8], [1], [3], [5], [2], [4], [7], and [6] provide the notation and terminology for this paper.

1. Preliminaries

In this paper Y is a non empty set.
We now state several propositions:
(1) For every element z of Y and for all partitions P_{1}, P_{2} of Y such that $P_{1} \Subset P_{2}$ holds $\operatorname{EqClass}\left(z, P_{1}\right) \subseteq \operatorname{EqClass}\left(z, P_{2}\right)$.
(2) For every element z of Y and for all partitions P_{1}, P_{2} of Y holds $\operatorname{EqClass}\left(z, P_{1}\right) \subseteq \operatorname{EqClass}\left(z, P_{1} \vee P_{2}\right)$.
(3) For every element z of Y and for all partitions P_{1}, P_{2} of Y holds $\operatorname{EqClass}\left(z, P_{1} \wedge P_{2}\right) \subseteq \operatorname{EqClass}\left(z, P_{1}\right)$.
(4) For every element z of Y and for every partition P_{1} of Y holds $\operatorname{EqClass}\left(z, P_{1}\right) \subseteq \operatorname{EqClass}(z, \mathcal{O}(Y))$ and $\operatorname{EqClass}(z, \mathcal{I}(Y)) \subseteq$ $\operatorname{EqClass}\left(z, P_{1}\right)$.
(5) Let G be a subset of PARTITIONS (Y) and A, B be partitions of Y. Suppose G is an independent family of partitions and $G=\{A, B\}$ and $A \neq B$. Let a, b be sets. If $a \in A$ and $b \in B$, then $a \cap b \neq \emptyset$.
(6) Let G be a subset of PARTITIONS (Y) and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$ and $A \neq B$, then $\bigwedge G=A \wedge B$.
(7) Let G be a subset of $\operatorname{PARTITIONS}(Y)$ and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$ and $A \neq B$, then $\operatorname{CompF}(A, G)=B$ and $\operatorname{CompF}(B, G)=A$.

2. Predicate Calculus

One can prove the following propositions:
(8) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$ and $A \neq B$, then $\exists \forall_{a, A} G, B G \Subset \forall_{\exists_{a, B} G, A} G$.
(9) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of $\operatorname{PARTITIONS}(Y)$, and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$, then $\forall_{\forall_{a, A} G, B} G=\forall_{\forall_{a, B} G, A} G$.
(10) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$, then $\exists_{\exists_{a, A} G, B} G=\exists_{\exists_{a, B} G, A} G$.
(11) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$ and $A \neq B$, then $\forall \forall_{a, A} G, B G \Subset \exists \forall_{a, B} G, A G$.
(12) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$ and $A \neq B$, then $\forall_{\forall_{a, A} G, B} G \Subset \exists_{\exists_{a, B} G, A} G$.
(13) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of $\operatorname{PARTITIONS}(Y)$, and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$ and $A \neq B$, then $\forall_{\forall_{a, A} G, B} G \Subset \forall_{\exists_{a, B} G, A} G$.
(14) For every element a of $\operatorname{BVF}(Y)$ and for every subset G of PARTITIONS (Y) and for all partitions A, B of Y holds $\exists_{a, A} G, B G \Subset$ $\exists_{\exists} \exists_{, B} G, A G$.
(15) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$ and $A \neq B$, then $\neg \exists \forall_{a, A} G, B G \Subset \exists \exists_{\neg a, B} G, A G$.
(16) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$ and $A \neq B$, then $\exists_{\neg \forall_{a, A} G, B} G \Subset \exists_{\exists_{\neg a, B} G, A} G$.
(17) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$ and $A \neq B$, then $\neg \forall_{\forall_{a, A} G, B} G \Subset \exists_{\neg \forall_{a, B} G, A} G$.
(18) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS((Y), and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$ and $A \neq B$, then $\forall_{\neg \forall_{a, A} G, B} G \Subset \exists_{\exists_{-a, B} G, A} G$.
(19) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$ and $A \neq B$, then $\neg \forall_{\forall_{a, A} G, B} G \Subset \exists_{\exists_{\neg a, B} G, A} G$.
(20) Let a be an element of $\operatorname{BVF}(Y), G$ be a subset of PARTITIONS (Y), and A, B be partitions of Y. If G is a coordinate and $G=\{A, B\}$ and $A \neq B$, then $\neg \forall_{\forall_{a, A} G, B} G \Subset \exists_{\exists_{\neg a, A} G, B} G$.

References

[1] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249-254, 1998.
[2] Shunichi Kobayashi and Kui Jia. A theory of partitions. Part I. Formalized Mathematics, 7(2):243-247, 1998.
[3] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. Formalized Mathematics, 7(2):307-312, 1998.
[4] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[5] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[8] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received July 14, 1999

