Predicate Calculus for Boolean Valued Functions. Part III

Shunichi Kobayashi Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano

Summary. In this paper, we proved some elementary predicate calculus formulae containing the quantifiers of Boolean valued functions with respect to partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC11.

The papers [8], [1], [3], [5], [2], [4], [7], and [6] provide the notation and terminology for this paper.

1. Preliminaries

In this paper Y is a non empty set.

We now state several propositions:

- (1) For every element z of Y and for all partitions P_1 , P_2 of Y such that $P_1 \Subset P_2$ holds $EqClass(z, P_1) \subseteq EqClass(z, P_2)$.
- (2) For every element z of Y and for all partitions P_1 , P_2 of Y holds $EqClass(z, P_1) \subseteq EqClass(z, P_1 \lor P_2)$.
- (3) For every element z of Y and for all partitions P_1 , P_2 of Y holds $EqClass(z, P_1 \land P_2) \subseteq EqClass(z, P_1)$.
- (4) For every element z of Y and for every partition P_1 of Y holds $EqClass(z, P_1) \subseteq EqClass(z, \mathcal{O}(Y))$ and $EqClass(z, \mathcal{I}(Y)) \subseteq EqClass(z, P_1)$.

C 2001 University of Białystok ISSN 1426-2630

SHUNICHI KOBAYASHI AND YATSUKA NAKAMURA

- (5) Let G be a subset of PARTITIONS(Y) and A, B be partitions of Y. Suppose G is an independent family of partitions and $G = \{A, B\}$ and $A \neq B$. Let a, b be sets. If $a \in A$ and $b \in B$, then $a \cap b \neq \emptyset$.
- (6) Let G be a subset of PARTITIONS(Y) and A, B be partitions of Y. If G is a coordinate and $G = \{A, B\}$ and $A \neq B$, then $\bigwedge G = A \land B$.
- (7) Let G be a subset of PARTITIONS(Y) and A, B be partitions of Y. If G is a coordinate and $G = \{A, B\}$ and $A \neq B$, then CompF(A, G) = B and CompF(B, G) = A.

2. Predicate Calculus

One can prove the following propositions:

- (8) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B* be partitions of *Y*. If *G* is a coordinate and $G = \{A, B\}$ and $A \neq B$, then $\exists_{\forall_{a,A}G,B}G \Subset \forall_{\exists_{a,B}G,A}G$.
- (9) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B* be partitions of *Y*. If *G* is a coordinate and $G = \{A, B\}$, then $\forall_{\forall_{a,A}G,B}G = \forall_{\forall_{a,B}G,A}G$.
- (10) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B* be partitions of *Y*. If *G* is a coordinate and $G = \{A, B\}$, then $\exists_{\exists_{a,A}G,B}G = \exists_{\exists_{a,B}G,A}G$.
- (11) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B* be partitions of *Y*. If *G* is a coordinate and $G = \{A, B\}$ and $A \neq B$, then $\forall_{\forall_{a,A}G,B}G \Subset \exists_{\forall_{a,B}G,A}G$.
- (12) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B* be partitions of *Y*. If *G* is a coordinate and $G = \{A, B\}$ and $A \neq B$, then $\forall_{\forall_{a,A}G,B}G \Subset \exists_{\exists_{a,B}G,A}G$.
- (13) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B* be partitions of *Y*. If *G* is a coordinate and $G = \{A, B\}$ and $A \neq B$, then $\forall_{\forall_{a,A}G,B}G \Subset \forall_{\exists_{a,B}G,A}G$.
- (14) For every element a of BVF(Y) and for every subset G of PARTITIONS(Y) and for all partitions A, B of Y holds $\forall_{\exists_{a,A}G,B}G \Subset \exists_{\exists_{a,B}G,A}G$.
- (15) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B* be partitions of *Y*. If *G* is a coordinate and $G = \{A, B\}$ and $A \neq B$, then $\neg \exists_{\forall_{a,A}G,B}G \Subset \exists_{\exists_{\neg a,B}G,A}G$.
- (16) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B* be partitions of *Y*. If *G* is a coordinate and $G = \{A, B\}$ and $A \neq B$, then $\exists_{\neg\forall a, AG, B}G \Subset \exists_{\exists \neg a, BG, A}G$.

52

- (17) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B* be partitions of *Y*. If *G* is a coordinate and $G = \{A, B\}$ and $A \neq B$, then $\neg \forall_{\forall_{a,A}G,B}G \Subset \exists_{\neg\forall_{a,B}G,A}G$.
- (18) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B* be partitions of *Y*. If *G* is a coordinate and $G = \{A, B\}$ and $A \neq B$, then $\forall_{\neg\forall_{a,A}G,B}G \Subset \exists_{\exists_{\neg a,B}G,A}G$.
- (19) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B* be partitions of *Y*. If *G* is a coordinate and $G = \{A, B\}$ and $A \neq B$, then $\neg \forall_{\forall_{a,A}G,B}G \Subset \exists_{\exists_{\neg a,B}G,A}G$.
- (20) Let *a* be an element of BVF(*Y*), *G* be a subset of PARTITIONS(*Y*), and *A*, *B* be partitions of *Y*. If *G* is a coordinate and $G = \{A, B\}$ and $A \neq B$, then $\neg \forall_{\forall_{a,A}G,B}G \Subset \exists_{\exists_{\neg a,A}G,B}G$.

References

- Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249–254, 1998.
- [2] Shunichi Kobayashi and Kui Jia. A theory of partitions. Part I. Formalized Mathematics, 7(2):243-247, 1998.
- [3] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and quantifiers with respect to partitions. *Formalized Mathematics*, 7(2):307–312, 1998.
- [4] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [5] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [8] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received July 14, 1999