Asymptotic Notation. Part II: Examples and Problems ${ }^{1}$

Richard Krueger
University of Alberta
Edmonton

Piotr Rudnicki
University of Alberta
Edmonton

Paul Shelley
University of Alberta
Edmonton

Abstract

Summary. The widely used textbook by Brassard and Bratley [2] includes a chapter devoted to asymptotic notation (Chapter 3, pp. 79-97). We have attempted to test how suitable the current version of Mizar is for recording this type of material in its entirety. This article is a follow-up to [11] in which we introduced the basic notions and general theory. This article presents a Mizar formalization of examples and solutions to problems from Chapter 3 of [2] (some of the examples and solved problems are also in [11]). Not all problems have been solved as some required solutions not amenable for formalization.

MML Identifier: ASYMPT_1.

The articles [11], [10], [14], [15], [3], [4], [17], [1], [12], [13], [6], [19], [8], [9], [7], [16], [18], and [5] provide the terminology and notation for this paper.

1. Examples from the Text

We adopt the following rules: c, e denote real numbers, k, n, m, N, n_{1}, M denote natural numbers, and x denotes a set.

One can prove the following two propositions:

[^0](1) Let t, t_{1} be sequences of real numbers. Suppose that
(i) $t(0)=0$,
(ii) for every n such that $n>0$ holds $t(n)=\left(12 \cdot n^{3} \cdot \log _{2} n-5 \cdot n^{2}\right)+$ $\left(\log _{2} n\right)^{2}+36$,
(iii) $t_{1}(0)=0$, and
(iv) for every n such that $n>0$ holds $t_{1}(n)=n^{3} \cdot \log _{2} n$.

Then there exist eventually-positive sequences s, s_{1} of real numbers such that $s=t$ and $s_{1}=t_{1}$ and $s \in O\left(s_{1}\right)$.
(2) Let a, b be logbase real numbers and f, g be sequences of real numbers. Suppose $a>1$ and $b>1$ and $f(0)=0$ and for every n such that $n>0$ holds $f(n)=\log _{a} n$ and $g(0)=0$ and for every n such that $n>0$ holds $g(n)=\log _{b} n$. Then there exist eventually-positive sequences s, s_{1} of real numbers such that $s=f$ and $s_{1}=g$ and $O(s)=O\left(s_{1}\right)$.
Let a, b, c be real numbers. The functor $\left\{a^{b \cdot n+c)}\right\}_{n \in \mathbb{N}}$ yields a sequence of real numbers and is defined by:
(Def. 1) $\quad\left(\left\{a^{b \cdot n+c)}\right\}_{n \in \mathbb{N}}\right)(n)=a^{b \cdot n+c}$.
Let a be a positive real number and let b, c be real numbers. One can verify that $\left\{a^{b \cdot n+c)}\right\}_{n \in \mathbb{N}}$ is eventually-positive.

The following proposition is true
(3) For all positive real numbers a, b such that $a<b$ holds $\left\{b^{1 \cdot n+0)}\right\}_{n \in \mathbb{N}} \notin$ $O\left(\left\{a^{1 \cdot n+0)}\right\}_{n \in \mathbb{N}}\right)$.
The sequence $\left\{\log _{2} n\right\}_{n \in \mathbb{N}}$ of real numbers is defined as follows:
(Def. 2) $\left\{\log _{2} n\right\}_{n \in \mathbb{N}}(0)=0$ and for every n such that $n>0$ holds $\left\{\log _{2} n\right\}_{n \in \mathbb{N}}(n)=\log _{2} n$.
Let a be a real number. The functor $\left\{n^{a}\right\}_{n \in \mathbb{N}}$ yielding a sequence of real numbers is defined as follows:
(Def. 3) $\quad\left\{n^{a}\right\}_{n \in \mathbb{N}}(0)=0$ and for every n such that $n>0$ holds $\left\{n^{a}\right\}_{n \in \mathbb{N}}(n)=n^{a}$.
Let us mention that $\left\{\log _{2} n\right\}_{n \in \mathbb{N}}$ is eventually-positive.
Let a be a real number. Observe that $\left\{n^{a}\right\}_{n \in \mathbb{N}}$ is eventually-positive.
We now state several propositions:
(4) Let f, g be eventually-nonnegative sequences of real numbers. Then $O(f) \subseteq O(g)$ and $O(f) \neq O(g)$ if and only if $f \in O(g)$ and $f \notin \Omega(g)$.
(5) $O\left(\left\{\log _{2} n\right\}_{n \in \mathbb{N}}\right) \subseteq O\left(\left\{n^{\left(\frac{1}{2}\right)}\right\}_{n \in \mathbb{N}}\right)$ and $O\left(\left\{\log _{2} n\right\}_{n \in \mathbb{N}}\right) \neq O\left(\left\{n^{\left(\frac{1}{2}\right)}\right\}_{n \in \mathbb{N}}\right)$.
(6) $\left\{n^{\left(\frac{1}{2}\right)}\right\}_{n \in \mathbb{N}} \in \Omega\left(\left\{\log _{2} n\right\}_{n \in \mathbb{N}}\right)$ and $\left\{\log _{2} n\right\}_{n \in \mathbb{N}} \notin \Omega\left(\left\{n^{\left(\frac{1}{2}\right)}\right\}_{n \in \mathbb{N}}\right)$.
(7) For every sequence f of real numbers and for every natural number k such that for every n holds $f(n)=\sum_{\kappa=0}^{n}\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right)(\kappa)$ holds $f \in \Theta\left(\left\{n^{(k+1)}\right\}_{n \in \mathbb{N}}\right)$.
(8) Let f be a sequence of real numbers. Suppose $f(0)=0$ and for every
n such that $n>0$ holds $f(n)=n^{\log _{2} n}$. Then there exists an eventuallypositive sequence s of real numbers such that $s=f$ and s is not smooth.
Let b be a real number. The functor $\{b\}_{n \in \mathbb{N}}$ yields a sequence of real numbers and is defined as follows:
(Def. 4) $\quad\{b\}_{n \in \mathbb{N}}=\mathbb{N} \longmapsto b$.
Let us note that $\{1\}_{n \in \mathbb{N}}$ is eventually-nonnegative.
One can prove the following proposition
(9) Let f be an eventually-nonnegative sequence of real numbers. Then there exists a non empty set F of functions from \mathbb{N} to \mathbb{R} such that $F=\left\{\left\{n^{1}\right\}_{n \in \mathbb{N}}\right\}$ and $f \in F^{O\left(\{1\}_{n \in \mathbb{N}}\right)}$ iff there exist N, c, k such that $c>0$ and for every n such that $n \geqslant N$ holds $1 \leqslant f(n)$ and $f(n) \leqslant c \cdot\left\{n^{k}\right\}_{n \in \mathbb{N}}(n)$.

2. Problem 3.1

One can prove the following proposition
(10) For every sequence f of real numbers such that for every n holds $f(n)=$ $\left(3 \cdot 10^{6}-18 \cdot 10^{3} \cdot n\right)+27 \cdot n^{2}$ holds $f \in O\left(\left\{n^{2}\right\}_{n \in \mathbb{N}}\right)$.

3. Problem 3.5

We now state three propositions:
(11) $\left\{n^{2}\right\}_{n \in \mathbb{N}} \in O\left(\left\{n^{3}\right\}_{n \in \mathbb{N}}\right)$.
(12) $\left\{n^{2}\right\}_{n \in \mathbb{N}} \notin \Omega\left(\left\{n^{3}\right\}_{n \in \mathbb{N}}\right)$.
(13) There exists an eventually-positive sequence s of real numbers such that $s=\left\{2^{1 \cdot n+1)}\right\}_{n \in \mathbb{N}}$ and $\left\{2^{1 \cdot n+0)}\right\}_{n \in \mathbb{N}} \in \Theta(s)$.
Let a be a natural number. The functor $\{(n+a)!\}_{n \in \mathbb{N}}$ yielding a sequence of real numbers is defined by:
$\left(\right.$ Def. 5) $\quad\{(n+a)!\}_{n \in \mathbb{N}}(n)=(n+a)!$.
Let a be a natural number. Observe that $\{(n+a)!\}_{n \in \mathbb{N}}$ is eventually-positive.
We now state the proposition

$$
\begin{equation*}
\{(n+0)!\}_{n \in \mathbb{N}} \notin \Theta\left(\{(n+1)!\}_{n \in \mathbb{N}}\right) \tag{14}
\end{equation*}
$$

4. Problem 3.6

The following proposition is true
(15) For every sequence f of real numbers such that $f \in O\left(\left\{n^{1}\right\}_{n \in \mathbb{N}}\right)$ holds ff $\in O\left(\left\{n^{2}\right\}_{n \in \mathbb{N}}\right)$.

5. Problem 3.7

We now state the proposition
(16) There exists an eventually-positive sequence s of real numbers such that $s=\left\{2^{1 \cdot n+0}\right\}_{n \in \mathbb{N}}$ and $2\left\{n^{1}\right\}_{n \in \mathbb{N}} \in O\left(\left\{n^{1}\right\}_{n \in \mathbb{N}}\right)$ and $\left\{2^{2 \cdot n+0}\right\}_{n \in \mathbb{N}} \notin O(s)$.

6. Problem 3.8

One can prove the following proposition
(17) If $\log _{2} 3<\frac{159}{100}$, then $\left\{n^{\left(\log _{2} 3\right)}\right\}_{n \in \mathbb{N}} \in O\left(\left\{n^{\left(\frac{159}{100}\right)}\right\}_{n \in \mathbb{N}}\right)$ and $\left\{n^{\left(\log _{2} 3\right)}\right\}_{n \in \mathbb{N}} \notin$ $\Omega\left(\left\{n^{\left(\frac{159}{100}\right)}\right\}_{n \in \mathbb{N}}\right)$ and $\left\{n^{\left(\log _{2} 3\right)}\right\}_{n \in \mathbb{N}} \notin \Theta\left(\left\{n^{\left(\frac{159}{100}\right)}\right\}_{n \in \mathbb{N}}\right)$.

7. Problem 3.11

We now state the proposition
(18) Let f, g be sequences of real numbers. Suppose for every n holds $f(n)=$ $n \bmod 2$ and for every n holds $g(n)=(n+1) \bmod 2$. Then there exist eventually-nonnegative sequences s, s_{1} of real numbers such that $s=f$ and $s_{1}=g$ and $s \notin O\left(s_{1}\right)$ and $s_{1} \notin O(s)$.

8. Problem 3.19

We now state two propositions:
(19) For all eventually-nonnegative sequences f, g of real numbers holds $O(f)=O(g)$ iff $f \in \Theta(g)$.
(20) For all eventually-nonnegative sequences f, g of real numbers holds $f \in$ $\Theta(g)$ iff $\Theta(f)=\Theta(g)$.

9. Problem 3.21

The following propositions are true:
(21) Let e be a real number and f be a sequence of real numbers. Suppose $0<e$ and $f(0)=0$ and for every n such that $n>0$ holds $f(n)=n \cdot \log _{2} n$. Then there exists an eventually-positive sequence s of real numbers such that $s=f$ and $O(s) \subseteq O\left(\left\{n^{(1+e)}\right\}_{n \in \mathbb{N}}\right)$ and $O(s) \neq O\left(\left\{n^{(1+e)}\right\}_{n \in \mathbb{N}}\right)$.
(22) Let e be a real number and g be a sequence of real numbers. Suppose $0<e$ and $e<1$ and $g(0)=0$ and $g(1)=0$ and for every n such that $n>1$ holds $g(n)=\frac{n^{2}}{\log _{2} n}$. Then there exists an eventually-positive sequence s of real numbers such that $s=g$ and $O\left(\left\{n^{(1+e)}\right\}_{n \in \mathbb{N}}\right) \subseteq O(s)$ and $O\left(\left\{n^{(1+e)}\right\}_{n \in \mathbb{N}}\right) \neq O(s)$.
(23) Let f be a sequence of real numbers. Suppose $f(0)=0$ and $f(1)=0$ and for every n such that $n>1$ holds $f(n)=\frac{n^{2}}{\log _{2} n}$. Then there exists an eventually-positive sequence s of real numbers such that $s=f$ and $O(s) \subseteq O\left(\left\{n^{8}\right\}_{n \in \mathbb{N}}\right)$ and $O(s) \neq O\left(\left\{n^{8}\right\}_{n \in \mathbb{N}}\right)$.
(24) Let g be a sequence of real numbers. Suppose that for every n holds $g(n)=\left(\left(n^{2}-n\right)+1\right)^{4}$. Then there exists an eventually-positive sequence s of real numbers such that $s=g$ and $O\left(\left\{n^{8}\right\}_{n \in \mathbb{N}}\right)=O(s)$.
(25) Let e be a real number. Suppose $0<e$ and $e<1$. Then there exists an eventually-positive sequence s of real numbers such that $s=$ $\left\{1+e^{1 \cdot n+0)}\right\}_{n \in \mathbb{N}}$ and $O\left(\left\{n^{8}\right\}_{n \in \mathbb{N}}\right) \subseteq O(s)$ and $O\left(\left\{n^{8}\right\}_{n \in \mathbb{N}}\right) \neq O(s)$.

10. Problem 3.22

One can prove the following propositions:
(26) Let f, g be sequences of real numbers. Suppose $f(0)=0$ and for every n such that $n>0$ holds $f(n)=n^{\log _{2} n}$ and $g(0)=0$ and for every n such that $n>0$ holds $g(n)=n^{\sqrt{n}}$. Then there exist eventually-positive sequences s, s_{1} of real numbers such that $s=f$ and $s_{1}=g$ and $O(s) \subseteq O\left(s_{1}\right)$ and $O(s) \neq O\left(s_{1}\right)$.
(27) Let f be a sequence of real numbers. Suppose $f(0)=0$ and for every n such that $n>0$ holds $f(n)=n^{\sqrt{n}}$. Then there exist eventually-positive sequences s, s_{1} of real numbers such that $s=f$ and $s_{1}=\left\{2^{1 \cdot n+0)}\right\}_{n \in \mathbb{N}}$ and $O(s) \subseteq O\left(s_{1}\right)$ and $O(s) \neq O\left(s_{1}\right)$.
(28) There exist eventually-positive sequences s, s_{1} of real numbers such that $s=\left\{2^{1 \cdot n+0)}\right\}_{n \in \mathbb{N}}$ and $s_{1}=\left\{2^{1 \cdot n+1)}\right\}_{n \in \mathbb{N}}$ and $O(s)=O\left(s_{1}\right)$.
(29) There exist eventually-positive sequences s, s_{1} of real numbers such that $s=\left\{2^{1 \cdot n+0)}\right\}_{n \in \mathbb{N}}$ and $s_{1}=\left\{2^{2 \cdot n+0)}\right\}_{n \in \mathbb{N}}$ and $O(s) \subseteq O\left(s_{1}\right)$ and $O(s) \neq$ $O\left(s_{1}\right)$.
(30) There exists an eventually-positive sequence s of real numbers such that $s=\left\{2^{2 \cdot n+0)}\right\}_{n \in \mathbb{N}}$ and $O(s) \subseteq O\left(\{(n+0)!\}_{n \in \mathbb{N}}\right)$ and $O(s) \neq O(\{(n+$ $\left.0)!\}_{n \in \mathbb{N}}\right)$.
(31) $O\left(\{(n+0)!\}_{n \in \mathbb{N}}\right) \subseteq O\left(\{(n+1)!\}_{n \in \mathbb{N}}\right)$ and $O\left(\{(n+0)!\}_{n \in \mathbb{N}}\right) \neq O(\{(n+$ 1)! $\left.\}_{n \in \mathbb{N}}\right)$.
(32) Let g be a sequence of real numbers. Suppose $g(0)=0$ and for every n such that $n>0$ holds $g(n)=n^{n}$. Then there exists an eventually-positive sequence s of real numbers such that $s=g$ and $O\left(\{(n+1)!\}_{n \in \mathbb{N}}\right) \subseteq O(s)$ and $O\left(\{(n+1)!\}_{n \in \mathbb{N}}\right) \neq O(s)$.

11. Problem 3.23

One can prove the following proposition
(33) Let given n. Suppose $n \geqslant 1$. Let f be a sequence of real numbers and k be a natural number. If for every n holds $f(n)=\sum_{\kappa=0}^{n}\left(\left\{n^{k}\right\}_{n \in \mathbb{N}}\right)(\kappa)$, then $f(n) \geqslant \frac{n^{k+1}}{k+1}$.

12. Problem 3.24

One can prove the following proposition
(34) Let f, g be sequences of real numbers. Suppose $g(0)=0$ and for every n such that $n>0$ holds $g(n)=n \cdot \log _{2} n$ and for every n holds $f(n)=$ $\log _{2}(n!)$. Then there exists an eventually-nonnegative sequence s of real numbers such that $s=g$ and $f \in \Theta(s)$.

13. Problem 3.26

The following proposition is true
(35) Let f be an eventually-nondecreasing eventually-nonnegative sequence of real numbers and t be a sequence of real numbers. Suppose that for every n holds if $n \bmod 2=0$, then $t(n)=1$ and if $n \bmod 2=1$, then $t(n)=n$. Then $t \notin \Theta(f)$.

14. Problem 3.28

Let f be a function from \mathbb{N} into \mathbb{R}^{*} and let n be a natural number. Then $f(n)$ is a finite sequence of elements of \mathbb{R}.

Let n be a natural number and let a, b be positive real numbers. The functor Prob28(n, a, b) yields a real number and is defined by:
(Def. 6)(i) $\operatorname{Prob} 28(n, a, b)=0$ if $n=0$,
(ii) there exists a natural number l and there exists a function p_{28} from \mathbb{N} into \mathbb{R}^{*} such that $l+1=n$ and $\operatorname{Prob} 28(n, a, b)=\pi_{n} p_{28}(l)$ and $p_{28}(0)=\langle a\rangle$ and for every natural number n there exists a natural number n_{1} such that $n_{1}=\left\lceil\frac{n+1+1}{2}\right\rceil$ and $p_{28}(n+1)=p_{28}(n)^{\wedge}\left\langle 4 \cdot \pi_{n_{1}} p_{28}(n)+b \cdot(n+1+1)\right\rangle$, otherwise.
Let a, b be positive real numbers. The functor $\{\operatorname{Prob} 28(n, a, b)\}_{n \in \mathbb{N}}$ yields a sequence of real numbers and is defined by:
(Def. 7) $\quad\left(\{\operatorname{Prob} 28(n, a, b)\}_{n \in \mathbb{N}}\right)(n)=\operatorname{Prob} 28(n, a, b)$.
The following proposition is true
(36) For all positive real numbers a, b holds $\{\operatorname{Prob} 28(n, a, b)\}_{n \in \mathbb{N}}$ is eventually-nondecreasing.
15. Problem 3.30

The non empty subset $\left\{2^{n}: n \in \mathbb{N}\right\}$ of \mathbb{N} is defined by:
(Def. 8) $\quad\left\{2^{n}: n \in \mathbb{N}\right\}=\left\{2^{n}: n\right.$ ranges over natural numbers $\}$.
Next we state three propositions:
(37) Let f be a sequence of real numbers. Suppose that for every n holds if $n \in\left\{2^{n}: n \in \mathbb{N}\right\}$, then $f(n)=n$ and if $n \notin\left\{2^{n}: n \in \mathbb{N}\right\}$, then $f(n)=2^{n}$. Then $f \in \Theta\left(\left\{n^{1}\right\}_{n \in \mathbb{N}} \mid\left\{2^{n}: n \in \mathbb{N}\right\}\right)$ and $f \notin \Theta\left(\left\{n^{1}\right\}_{n \in \mathbb{N}}\right)$ and $\left\{n^{1}\right\}_{n \in \mathbb{N}}$ is smooth and f is not eventually-nondecreasing.
(38) Let f, g be sequences of real numbers. Suppose $f(0)=0$ and for every n such that $n>0$ holds $f(n)=n^{2^{\left\lfloor\log _{2} n\right\rfloor}}$ and $g(0)=0$ and for every n such that $n>0$ holds $g(n)=n^{n}$. Then there exists an eventually-positive sequence s of real numbers such that
(i) $s=g$,
(ii) $f \in \Theta\left(s \mid\left\{2^{n}: n \in \mathbb{N}\right\}\right)$,
(iii) $f \notin \Theta(s)$,
(iv) f is eventually-nondecreasing,
(v) s is eventually-nondecreasing, and
(vi) s is not smooth w.r.t. 2 .
(39) Let g be a sequence of real numbers. Suppose that for every n holds if $n \in\left\{2^{n}: n \in \mathbb{N}\right\}$, then $g(n)=n$ and if $n \notin\left\{2^{n}: n \in \mathbb{N}\right\}$, then $g(n)=n^{2}$. Then there exists an eventually-positive sequence s of real numbers such that $s=g$ and $\left\{n^{1}\right\}_{n \in \mathbb{N}} \in \Theta\left(s \mid\left\{2^{n}: n \in \mathbb{N}\right\}\right)$ and $\left\{n^{1}\right\}_{n \in \mathbb{N}} \notin \Theta(s)$ and $s_{2} \in O(s)$ and $\left\{n^{1}\right\}_{n \in \mathbb{N}}$ is eventually-nondecreasing and s is not eventuallynondecreasing.

16. PRoblem 3.31

Let x be a natural number. The functor x_{i} yielding a natural number is defined as follows:
(Def. 9)(i) There exists n such that $n!\leqslant x$ and $x<(n+1)$! and $x_{i}=n!$ if $x \neq 0$,
(ii) $\quad x_{i}=0$, otherwise.

Next we state the proposition
(40) Let f be a sequence of real numbers. Suppose that for every n holds $f(n)=n_{\mathrm{i}}$. Then there exists an eventually-positive sequence s of real numbers such that $s=f$ and f is eventually-nondecreasing and for every n holds $f(n) \leqslant\left\{n^{1}\right\}_{n \in \mathbb{N}}(n)$ and s is not smooth.

17. Problem 3.34

Let us mention that $\left\{n^{1}\right\}_{n \in \mathbb{N}}-\{1\}_{n \in \mathbb{N}}$ is eventually-positive.
One can prove the following proposition

$$
\begin{equation*}
\Theta\left(\left\{n^{1}\right\}_{n \in \mathbb{N}}-\{1\}_{n \in \mathbb{N}}\right)+\Theta\left(\left\{n^{1}\right\}_{n \in \mathbb{N}}\right)=\Theta\left(\left\{n^{1}\right\}_{n \in \mathbb{N}}\right) . \tag{41}
\end{equation*}
$$

18. Problem 3.35

One can prove the following proposition
(42) There exists a non empty set F of functions from \mathbb{N} to \mathbb{R} such that $F=\left\{\left\{n^{1}\right\}_{n \in \mathbb{N}}\right\}$ and for every n holds $\left\{n^{(-1)}\right\}_{n \in \mathbb{N}}(n) \leqslant\left\{n^{1}\right\}_{n \in \mathbb{N}}(n)$ and $\left\{n^{(-1)}\right\}_{n \in \mathbb{N}} \notin F^{O\left(\{1\}_{n \in \mathbb{N}}\right)}$.

19. Addition

The following proposition is true
(43) Let c be a non negative real number and x, f be eventually-nonnegative sequences of real numbers. Given e, N such that $e>0$ and for every n such that $n \geqslant N$ holds $f(n) \geqslant e$. If $x \in O(c+f)$, then $x \in O(f)$.

20. Potentatially Useful

The following propositions are true:
(44) $2^{2}=4$.
(45) $2^{3}=8$.
(46) $2^{4}=16$.
(47) $2^{5}=32$.
(48) $2^{6}=64$.
(49) $2^{12}=4096$.
(50) For every n such that $n \geqslant 3$ holds $n^{2}>2 \cdot n+1$.
(51) For every n such that $n \geqslant 10$ holds $2^{n-1}>(2 \cdot n)^{2}$.
(52) For every n such that $n \geqslant 9$ holds $(n+1)^{6}<2 \cdot n^{6}$.
(53) For every n such that $n \geqslant 30$ holds $2^{n}>n^{6}$.
(54) For every real number x such that $x>9$ holds $2^{x}>(2 \cdot x)^{\mathbf{2}}$.
(55) There exists N such that for every n such that $n \geqslant N$ holds $\sqrt{n}-\log _{2} n>$ 1.
(56) For all real numbers a, b, c such that $a>0$ and $c>0$ and $c \neq 1$ holds $a^{b}=c^{b \cdot \log _{c} a}$.
(57) $(4+1)!=120$.
(58) $\quad 5^{5}=3125$.
(59) $4^{4}=256$.
(60) For every n holds $\left(n^{2}-n\right)+1>0$.
(61) For every n such that $n \geqslant 2$ holds $n!>1$.
(62) For all n_{1}, n such that $n \leqslant n_{1}$ holds n ! $\leqslant n_{1}$!.
(63) For every k such that $k \geqslant 1$ there exists n such that $n!\leqslant k$ and $k<$ $(n+1)!$ and for every m such that $m!\leqslant k$ and $k<(m+1)$! holds $m=n$.
(64) For every n such that $n \geqslant 2$ holds $\left\lceil\frac{n}{2}\right\rceil<n$.
(65) For every n such that $n \geqslant 3$ holds $n!>n$.
(66) For all natural numbers m, n such that $m>0$ holds m^{n} is a natural number.
(67) For every n such that $n \geqslant 2$ holds $2^{n}>n+1$.
(68) Let a be a logbase real number and f be a sequence of real numbers. Suppose $a>1$ and $f(0)=0$ and for every n such that $n>0$ holds $f(n)=\log _{a} n$. Then f is eventually-positive.
(69) For all eventually-nonnegative sequences f, g of real numbers holds $f \in$ $O(g)$ and $g \in O(f)$ iff $O(f)=O(g)$.
(70) For all real numbers a, b, c such that $0<a$ and $a \leqslant b$ and $c \geqslant 0$ holds $a^{c} \leqslant b^{c}$.
(71) For every n such that $n \geqslant 4$ holds $2 \cdot n+3<2^{n}$.
(72) For every n such that $n \geqslant 6$ holds $(n+1)^{2}<2^{n}$.
(73) For every real number c such that $c>6$ holds $c^{2}<2^{c}$.
(74) Let e be a positive real number and f be a sequence of real numbers. Suppose $f(0)=0$ and for every n such that $n>0$ holds $f(n)=\log _{2}\left(n^{e}\right)$. Then $f /\left\{n^{e}\right\}_{n \in \mathbb{N}}$ is convergent and $\lim \left(f /\left\{n^{e}\right\}_{n \in \mathbb{N}}\right)=0$.
(75) For every real number e such that $e>0$ holds $\left\{\log _{2} n\right\}_{n \in \mathbb{N}} /\left\{n^{e}\right\}_{n \in \mathbb{N}}$ is convergent and $\lim \left(\left\{\log _{2} n\right\}_{n \in \mathbb{N}} /\left\{n^{e}\right\}_{n \in \mathbb{N}}\right)=0$.
(76) For every sequence f of real numbers and for every N such that for every n such that $n \leqslant N$ holds $f(n) \geqslant 0$ holds $\sum_{\kappa=0}^{N} f(\kappa) \geqslant 0$.
(77) For all sequences f, g of real numbers and for every N such that for every n such that $n \leqslant N$ holds $f(n) \leqslant g(n)$ holds $\sum_{\kappa=0}^{N} f(\kappa) \leqslant \sum_{\kappa=0}^{N} g(\kappa)$.
(78) Let f be a sequence of real numbers and b be a real number. Suppose $f(0)=0$ and for every n such that $n>0$ holds $f(n)=b$. Let N be a natural number. Then $\sum_{\kappa=0}^{N} f(\kappa)=b \cdot N$.
(79) For all sequences f, g of real numbers and for all natural numbers N, M holds $\sum_{\kappa=N+1}^{M} f(\kappa)+f(N+1)=\sum_{\kappa=N+1+1}^{M} f(\kappa)$.
(80) Let f, g be sequences of real numbers, M be a natural number, and given N. Suppose $N \geqslant M+1$. If for every n such that $M+1 \leqslant n$ and $n \leqslant N$ holds $f(n) \leqslant g(n)$, then $\sum_{\kappa=N+1}^{M} f(\kappa) \leqslant \sum_{\kappa=N+1}^{M} g(\kappa)$.
(81) For every n holds $\left\lceil\frac{n}{2}\right\rceil \leqslant n$.
(82) Let f be a sequence of real numbers, b be a real number, and N be a natural number. Suppose $f(0)=0$ and for every n such that $n>0$ holds $f(n)=b$. Let M be a natural number. Then $\sum_{\kappa=N+1}^{M} f(\kappa)=b \cdot(N-M)$.
(83) Let f, g be sequences of real numbers, N be a natural number, and c be a real number. Suppose f is convergent and $\lim f=c$ and for every n such that $n \geqslant N$ holds $f(n)=g(n)$. Then g is convergent and $\lim g=c$.
(84) For every n such that $n \geqslant 1$ holds $\left(n^{2}-n\right)+1 \leqslant n^{2}$.
(85) For every n such that $n \geqslant 1$ holds $n^{2} \leqslant 2 \cdot\left(\left(n^{2}-n\right)+1\right)$.
(86) For every real number e such that $0<e$ and $e<1$ there exists N such that for every n such that $n \geqslant N$ holds $n \cdot \log _{2}(1+e)-8 \cdot \log _{2} n>8 \cdot \log _{2} n$.
(87) For every n such that $n \geqslant 10$ holds $\frac{2^{2 \cdot n}}{n!}<\frac{1}{2^{n-9}}$.
(88) For every n such that $n \geqslant 3$ holds $2 \cdot(n-2) \geqslant n-1$.
(89) For every real number c such that $c \geqslant 0$ holds $c^{\frac{1}{2}}=\sqrt{c}$.
(90) There exists N such that for every n such that $n \geqslant N$ holds $n-\sqrt{n}$. $\log _{2} n>\frac{n}{2}$.
(91) For every sequence s of real numbers such that for every n holds $s(n)=$ $\left(1+\frac{1}{n+1}\right)^{n+1}$ holds s is non-decreasing.
(92) For every n such that $n \geqslant 1$ holds $\left(\frac{n+1}{n}\right)^{n} \leqslant\left(\frac{n+2}{n+1}\right)^{n+1}$.
(93) For all k, n such that $k \leqslant n$ holds $\binom{n}{k} \geqslant \frac{\binom{n+1}{k}}{n+1}$.
(94) For every sequence f of real numbers such that for every n holds $f(n)=$ $\log _{2}(n!)$ and for every n holds $f(n)=\sum_{k=0}^{n}\left(\left\{\log _{2} n\right\}_{n \in \mathbb{N}}\right)(\kappa)$.
(95) For every n such that $n \geqslant 4$ holds $n \cdot \log _{2} n \geqslant 2 \cdot n$.
(96) Let a, b be positive real numbers. Then $\operatorname{Prob} 28(0, a, b)=0$ and $\operatorname{Prob} 28(1, a, b)=a$ and for every n such that $n \geqslant 2$ there exists n_{1} such that $n_{1}=\left\lceil\frac{n}{2}\right\rceil$ and $\operatorname{Prob} 28(n, a, b)=4 \cdot \operatorname{Prob} 28\left(n_{1}, a, b\right)+b \cdot n$.
(97) For every n such that $n \geqslant 2$ holds $n^{2}>n+1$.
(98) For every n such that $n \geqslant 1$ holds $2^{n+1}-2^{n}>1$.
(99) For every n such that $n \geqslant 2$ holds $2^{n}-1 \notin\left\{2^{n}: n \in \mathbb{N}\right\}$.
(100) For all n, k such that $k \geqslant 1$ and $n!\leqslant k$ and $k<(n+1)$! holds $k_{\mathrm{i}}=n$!.
(101) For all real numbers a, b, c such that $a>1$ and $b \geqslant a$ and $c \geqslant 1$ holds $\log _{a} c \geqslant \log _{b} c$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics. Prentice Hall, 1996.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[8] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Elżbieta Kraszewska and Jan Popiołek. Series in Banach and Hilbert Spaces. Formalized Mathematics, 2(5):695-699, 1991.
[11] Richard Krueger, Piotr Rudnicki, and Paul Shelley. Asymptotic notation. Part I: Theory. Formalized Mathematics, 9(1):135-142, 2001.
[12] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[13] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[15] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[16] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[17] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[^0]: ${ }^{1}$ This work has been supported by NSERC Grant OGP9207.

