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The papers [15], [3], [11], [5], [6], [7], [8], [4], [10], [13], [2], [9], [12], [1], [16], [17],

and [14] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

(1) For all functions f , g, h such that dom f ∩ dom g ⊆ domh holds

f+·g+·h = g+·f+·h.

(2) For all functions f , g, h such that f ⊆ g and rng h ∩ dom g ⊆ dom f

holds g · h = f · h.

(3) For all functions f , g, h such that dom f ⊆ rng g and dom f misses rng h

and g◦ domh misses dom f holds f · (g+·h) = f · g.

(4) For all functions f1, f2, g1, g2 such that f1 ≈ f2 and g1 ≈ g2 holds

f1 · g1 ≈ f2 · g2.

(5) Let X1, Y1, X2, Y2 be non empty sets, f be a function from X1 into X2,

and g be a function from Y1 into Y2. If f ⊆ g, then f∗ ⊆ g∗.

(6) Let X1, Y1, X2, Y2 be non empty sets, f be a function from X1 into X2,

and g be a function from Y1 into Y2. If f ≈ g, then f∗ ≈ g∗.

Let X be a set and let f be a function. The functor X -indexing f yielding

a many sorted set indexed by X is defined as follows:

(Def. 1) X -indexing f = idX+·f↾X.

We now state a number of propositions:
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(7) For every set X and for every function f holds rng(X -indexing f) =

(X \ dom f) ∪ f◦X.

(8) For every non empty setX and for every function f and for every element

x of X holds (X -indexing f)(x) = (idX+·f)(x).

(9) For all sets X, x and for every function f such that x ∈ X holds

if x ∈ dom f, then (X -indexing f)(x) = f(x) and if x /∈ dom f, then

(X -indexing f)(x) = x.

(10) For every set X and for every function f such that dom f = X holds

X -indexing f = f.

(11) For every setX and for every function f holdsX -indexing(X -indexing f) =

X -indexing f.

(12) For every set X and for every function f holds X -indexing(idX+·f) =

X -indexing f.

(13) For every set X and for every function f such that f ⊆ idX holds

X -indexing f = idX .

(14) For every set X holds X -indexing ∅ = idX .

(15) For every set X and for every function f holds X -indexing f↾X =

X -indexing f.

(16) For every set X and for every function f such that X ⊆ dom f holds

X -indexing f = f↾X.

(17) For every function f holds ∅ -indexing f = ∅.

(18) For all sets X, Y and for every function f such that X ⊆ Y holds

(Y -indexing f)↾X = X -indexing f.

(19) For all sets X, Y and for every function f holds (X ∪ Y ) -indexing f =

(X -indexing f)+·(Y -indexing f).

(20) For all sets X, Y and for every function f holds X -indexing f ≈

Y -indexing f.

(21) For all sets X, Y and for every function f holds (X ∪ Y ) -indexing f =

(X -indexing f) ∪ (Y -indexing f).

(22) For every non empty set X and for all functions f , g such that rng g ⊆ X

holds (X -indexing f) · g = (idX+·f) · g.

(23) For all functions f , g such that dom f misses dom g and rng g misses

dom f and for every set X holds f · (X -indexing g) = f↾X.

Let f be a function. A function is called a rng-retraction of f if:

(Def. 2) dom it = rng f and f · it = idrng f .

We now state several propositions:

(24) For every function f and for every rng-retraction g of f holds rng g ⊆

dom f.
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(25) Let f be a function, g be a rng-retraction of f , and x be a set. If x ∈ rng f,

then g(x) ∈ dom f and f(g(x)) = x.

(26) For every function f such that f is one-to-one holds f−1 is a rng-

retraction of f .

(27) For every function f such that f is one-to-one and for every rng-

retraction g of f holds g = f−1.

(28) Let f1, f2 be functions. Suppose f1 ≈ f2. Let g1 be a rng-retraction of f1

and g2 be a rng-retraction of f2. Then g1+·g2 is a rng-retraction of f1+·f2.

(29) Let f1, f2 be functions. Suppose f1 ⊆ f2. Let g1 be a rng-retraction of

f1. Then there exists a rng-retraction g2 of f2 such that g1 ⊆ g2.

2. Replacement in Signature

Let S be a non empty non void many sorted signature and let f , g be

functions. We say that f and g form a replacement in S if and only if the

condition (Def. 3) is satisfied.

(Def. 3) Let o1, o2 be operation symbols of S. Suppose (idthe operation symbols of S+·g)

(o1) = (idthe operation symbols of S+·g)(o2). Then

(i) (idthe carrier of S+·f) ·Arity(o1) = (idthe carrier of S+·f) ·Arity(o2), and

(ii) (idthe carrier of S+·f)(the result sort of o1) = (idthe carrier of S+·f)(the

result sort of o2).

One can prove the following propositions:

(30) Let S be a non empty non void many sorted signature and f , g be

functions. Then f and g form a replacement in S if and only if for

all operation symbols o1, o2 of S such that ((the operation symbols of

S) -indexing g)(o1) = ((the operation symbols of S) -indexing g)(o2) holds

((the carrier of S) -indexing f)·Arity(o1) = ((the carrier of S) -indexing f)·

Arity(o2) and ((the carrier of S) -indexing f)(the result sort of o1) = ((the

carrier of S) -indexing f)(the result sort of o2).

(31) Let S be a non empty non void many sorted signature and f , g be

functions. Then f and g form a replacement in S if and only if (the car-

rier of S) -indexing f and (the operation symbols of S) -indexing g form a

replacement in S.

In the sequel S, S′ denote non void signatures and f , g denote functions.

One can prove the following four propositions:

(32) If f and g form morphism between S and S′, then f and g form a

replacement in S.

(33) f and ∅ form a replacement in S.
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(34) If g is one-to-one and (the operation symbols of S)∩ rng g ⊆ dom g, then

f and g form a replacement in S.

(35) If g is one-to-one and rng g misses the operation symbols of S, then f

and g form a replacement in S.

Let X be a set, let Y be a non empty set, let a be a function from Y into

X∗, and let r be a function from Y into X. Observe that 〈X,Y, a, r〉 is non void.

Let S be a non empty non void many sorted signature and let f , g be

functions. Let us assume that f and g form a replacement in S. The functor

S with-replacement(f, g) yields a strict non empty non void many sorted signa-

ture and is defined by the conditions (Def. 4).

(Def. 4)(i) (The carrier of S) -indexing f and (the operation symbols of

S) -indexing g form morphism between S and S with-replacement(f, g),

(ii) the carrier of S with-replacement(f, g) = rng((the carrier of

S) -indexing f), and

(iii) the operation symbols of S with-replacement(f, g) = rng((the operation

symbols of S) -indexing g).

The following propositions are true:

(36) Let S1, S2 be non void signatures, f be a function from the carrier of S1

into the carrier of S2, and g be a function. Suppose f and g form morphism

between S1 and S2. Then f∗ · the arity of S1 = (the arity of S2) · g.

(37) Suppose f and g form a replacement in S. Then (the carrier of

S) -indexing f is a function from the carrier of S into the carrier of

S with-replacement(f, g).

(38) Suppose f and g form a replacement in S. Let f ′ be a function from

the carrier of S into the carrier of S with-replacement(f, g). Suppose f ′ =

(the carrier of S) -indexing f. Let g′ be a rng-retraction of (the operation

symbols of S) -indexing g. Then the arity of S with-replacement(f, g) =

f ′∗ · the arity of S · g′.

(39) Suppose f and g form a replacement in S. Let g′ be a rng-retraction

of (the operation symbols of S) -indexing g. Then the result sort of

S with-replacement(f, g) = ((the carrier of S) -indexing f) · the result sort

of S · g′.

(40) If f and g form morphism between S and S′, then S with-replacement(f, g)

is a subsignature of S′.

(41) f and g form a replacement in S if and only if (the carrier of

S) -indexing f and (the operation symbols of S) -indexing g form morphism

between S and S with-replacement(f, g).

(42) Suppose dom f ⊆ the carrier of S and dom g ⊆ the opera-

tion symbols of S and f and g form a replacement in S. Then

idthe carrier of S+·f and idthe operation symbols of S+·g form morphism be-
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tween S and S with-replacement(f, g).

(43) Suppose dom f = the carrier of S and dom g = the operation symbols

of S and f and g form a replacement in S. Then f and g form morphism

between S and S with-replacement(f, g).

(44) If f and g form a replacement in S, then S with-replacement((the carrier

of S) -indexing f, g) = S with-replacement(f, g).

(45) If f and g form a replacement in S, then S with-replacement(f, (the

operation symbols of S) -indexing g) = S with-replacement(f, g).

3. Signature Extensions

Let S be a signature. A signature is called an extension of S if:

(Def. 5) S is a subsignature of it.

The following propositions are true:

(46) For all signatures S, E holds S is a subsignature of E iff E is an extension

of S.

(47) Every signature S is an extension of S.

(48) For every signature S1 and for every extension S2 of S1 holds every

extension of S2 is an extension of S1.

(49) For all non empty signatures S1, S2 such that S1 ≈ S2 holds S1+·S2 is

an extension of S1.

(50) For all non empty signatures S1, S2 holds S1+·S2 is an extension of S2.

(51) Let S1, S2, S be non empty many sorted signatures and f1, g1, f2, g2

be functions. Suppose f1 ≈ f2 and f1 and g1 form morphism between S1

and S and f2 and g2 form morphism between S2 and S. Then f1+·f2 and

g1+·g2 form morphism between S1+·S2 and S.

(52) Let S1, S2, E be non empty signatures. Then E is an extension of S1

and an extension of S2 if and only if S1 ≈ S2 and E is an extension of

S1+·S2.

Let S be a non empty signature. One can check that every extension of S is

non empty.

Let S be a non void signature. One can verify that every extension of S is

non void.

One can prove the following proposition

(53) For all signatures S, T such that S is empty holds T is an extension of

S.

Let S be a signature. One can check that there exists an extension of S

which is non empty, non void, and strict.
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The following three propositions are true:

(54) Let S be a non void signature and E be an extension of S. Suppose f

and g form a replacement in E. Then f and g form a replacement in S.

(55) Let S be a non void signature and E be an extension of S. Suppose f and

g form a replacement in E. Then E with-replacement(f, g) is an extension

of S with-replacement(f, g).

(56) Let S1, S2 be non void signatures. Suppose S1 ≈ S2. Let f ,

g be functions. If f and g form a replacement in S1+·S2, then

(S1+·S2)with-replacement(f, g) =

(S1with-replacement(f, g))+·(S2with-replacement(f, g)).

4. Algebras

Algebra is defined by:

(Def. 6) There exists a non void signature S such that it is a feasible algebra over

S.

Let S be a signature. An algebra is called an algebra of S if:

(Def. 7) There exists a non void extension E of S such that it is a feasible algebra

over E.

One can prove the following propositions:

(57) For every non void signature S holds every feasible algebra over S is an

algebra of S.

(58) For every signature S and for every extension E of S holds every algebra

of E is an algebra of S.

(59) Let S be a signature, E be a non empty signature, and A be an algebra

over E. Suppose A is an algebra of S. Then the carrier of S ⊆ the carrier

of E and the operation symbols of S ⊆ the operation symbols of E.

(60) Let S be a non void signature, E be a non empty signature, and A be

an algebra over E. Suppose A is an algebra of S. Let o be an operation

symbol of S. Then (the characteristics of A)(o) is a function from (the

sorts of A)#(Arity(o)) into (the sorts of A)(the result sort of o).

(61) Let S be a non empty signature, A be an algebra of S, and E be a non

empty many sorted signature. If A is an algebra over E, then A is an

algebra over E+·S.

(62) Let S1, S2 be non empty signatures and A be an algebra over S1. Suppose

A is an algebra over S2. Then the carrier of S1 = the carrier of S2 and the

operation symbols of S1 = the operation symbols of S2.

(63) For every non void signature S and for every non-empty disjoint algebra

A over S holds the sorts of A are one-to-one.
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(64) Let S be a non void signature, A be a disjoint algebra over S, and C1,

C2 be components of the sorts of A. Then C1 = C2 or C1 misses C2.

(65) Let S, S′ be non void signatures and A be a non-empty disjoint algebra

over S. Suppose A is an algebra over S′. Then the many sorted signature

of S = the many sorted signature of S′.

(66) Let S′ be a non void signature and A be a non-empty disjoint algebra

over S. If A is an algebra of S′, then S is an extension of S′.
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