
FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999

University of Białystok

The Construction and Computation of

Conditional Statements for SCMPDS1

Jing-Chao Chen

Shanghai Jiaotong University

Summary. We construct conditional statements like the usual high level
program language by program blocks of SCMPDS. Roughly speaking, the article
justifies such a fact that when the condition of a conditional statement is true
(false), and the true (false) branch is shiftable, parahalting and does not contain
any halting instruction, and the false branch is shiftable, then it is halting and
its computation result equals that of the true (false) branch. The parahalting
means some program halts for all states, this is strong condition. For this reason,
we introduce the notions of ”is closed on” and ”is halting on”. The predicate ”A
is closed on B” denotes program A is closed on state B, and ”A is halting on B”
denotes program A is halting on state B. We obtain a similar theorem to the
above fact by replacing parahalting by ”is closed on” and ”is halting on”.

MML Identifier: SCMPDS 6.

The terminology and notation used in this paper are introduced in the following

papers: [16], [19], [11], [14], [20], [5], [6], [18], [2], [12], [13], [17], [15], [4], [10],

[7], [1], [9], [3], and [8].

1. Preliminaries

For simplicity, we follow the rules: a denotes a Int position, i denotes an in-

struction of SCMPDS, s, s1, s2 denote states of SCMPDS, k1 denotes an integer,

l1 denotes an instruction-location of SCMPDS, and I, J denote Program-block.

One can prove the following propositions:

1This research is partially supported by the National Natural Science Foundation of China
Grant No. 69873033.

219
c© 1999 University of Białystok

ISSN 1426–2630



220 jing-chao chen

(1) For every state s of SCMPDS holds dom(s↾the instruction locations of

SCMPDS) = the instruction locations of SCMPDS.

(2) For every state s of SCMPDS such that s is halting and

for every natural number k such that LifeSpan(s) ¬ k holds

CurInstr((Computation(s))(k)) = haltSCMPDS.

(3) For every state s of SCMPDS such that s is halting and for every na-

tural number k such that LifeSpan(s) ¬ k holds IC(Computation(s))(k) =

IC(Computation(s))(LifeSpan(s)).

(4) Let s1, s2 be states of SCMPDS. Then s1 and s2 are equal outside

the instruction locations of SCMPDS if and only if IC(s1) = IC(s2) and

s1↾Data-LocSCM = s2↾Data-LocSCM.

(5) For every state s of SCMPDS and for every Program-block I holds

Initialized(s)+· Initialized(I) = s+· Initialized(I).

(6) For every Program-block I and for every instruction-location l of

SCMPDS holds I ⊆ I+·Start-At(l).

(7) For every state s of SCMPDS and for every instruction-location l of

SCMPDS holds s↾Data-LocSCM = (s+·Start-At(l))↾Data-LocSCM.

(8) For every state s of SCMPDS and for every Program-block I and

for every instruction-location l of SCMPDS holds s↾Data-LocSCM =

(s+·(I+·Start-At(l)))↾Data-LocSCM.

(9) For every state s of SCMPDS and for every Program-block I holds

s↾Data-LocSCM = (s+· Initialized(I))↾Data-LocSCM.

(10) Let s be a state of SCMPDS and l be an instruction-location of

SCMPDS. Then dom(s↾the instruction locations of SCMPDS) misses

domStart-At(l).

(11) Let s be a state of SCMPDS, I, J be Program-block, and l be

an instruction-location of SCMPDS. Then s+·(I+·Start-At(l)) and

s+·(J+·Start-At(l)) are equal outside the instruction locations of

SCMPDS.

(12) Let s1, s2 be states of SCMPDS and I, J be Program-block. Sup-

pose s1↾Data-LocSCM = s2↾Data-LocSCM. Then s1+· Initialized(I) and

s2+· Initialized(J) are equal outside the instruction locations of SCMPDS.

(13) Let I be a programmed finite partial state of SCMPDS and x be a set.

If x ∈ dom I, then I(x) is an instruction of SCMPDS.

(14) For every state s of SCMPDS and for all instructions-locations l2, l3 of

SCMPDS holds s+·Start-At(l2)+·Start-At(l3) = s+·Start-At(l3).

(15) card(i;I) = card I + 1.

(16) (i;I)(inspos 0) = i.

(17) I ⊆ Initialized(stop I).



the construction and computation of . . . 221

(18) If l1 ∈ dom I, then l1 ∈ dom stop I.

(19) If l1 ∈ dom I, then (stop I)(l1) = I(l1).

(20) If l1 ∈ dom I, then (Initialized(stop I))(l1) = I(l1).

(21) ICs+· Initialized(I) = inspos 0.

(22) CurInstr(s+· Initialized(stop i;I)) = i.

(23) For every state s of SCMPDS and for all natural numbers m1, m2 such

that ICs = insposm1 holds ICplusConst(s,m2) = insposm1 + m2.

(24) For all Program-block I, J holds Shift(stopJ, card I) ⊆ stop I;J.

(25) inspos card I ∈ dom stop I and (stop I)(inspos card I) = haltSCMPDS.

(26) For all instructions-locations x, l of SCMPDS holds (IExec(J, s))(x) =

(IExec(I, s)+·Start-At(l))(x).

(27) For all instructions-locations x, l of SCMPDS holds (IExec(I, s))(x) =

(s+·Start-At(l))(x).

(28) Let s be a state of SCMPDS, i be a No-StopCode parahalting instruction

of SCMPDS, J be a parahalting shiftable Program-block, and a be a Int

position. Then (IExec(i;J, s))(a) = (IExec(J,Exec(i, Initialized(s))))(a).

(29) For every Int position a and for all integers k1, k2 holds (a, k1) <>

0 gotok2 6= haltSCMPDS.

(30) For every Int position a and for all integers k1, k2 holds (a, k1) <=

0 gotok2 6= haltSCMPDS.

(31) For every Int position a and for all integers k1, k2 holds (a, k1) >=

0 gotok2 6= haltSCMPDS.

Let us consider k1. The functor Goto(k1) yielding a Program-block is defined

as follows:

(Def. 1) Goto(k1) = Load(goto k1).

Let n be a natural number. One can verify that goto (n+1) is No-StopCode

and goto (−(n + 1)) is No-StopCode.

Let n be a natural number. Observe that Goto(n + 1) is No-StopCode and

Goto(−(n + 1)) is No-StopCode.

The following two propositions are true:

(32) cardGoto(k1) = 1.

(33) inspos 0 ∈ domGoto(k1) and (Goto(k1))(inspos 0) = goto k1.

2. The Predicates of is closed on and is halting on

Let I be a Program-block and let s be a state of SCMPDS. We say that I

is closed on s if and only if:



222 jing-chao chen

(Def. 2) For every natural number k holds IC(Computation(s+· Initialized(stop I)))(k) ∈

dom stop I.

We say that I is halting on s if and only if:

(Def. 3) s+· Initialized(stop I) is halting.

We now state a number of propositions:

(34) For every Program-block I holds I is paraclosed iff for every state s of

SCMPDS holds I is closed on s.

(35) For every Program-block I holds I is parahalting iff for every state s of

SCMPDS holds I is halting on s.

(36) Let s1, s2 be states of SCMPDS and I be a Program-block. If

s1↾Data-LocSCM = s2↾Data-LocSCM, then if I is closed on s1, then I is

closed on s2.

(37) Let s1, s2 be states of SCMPDS and I be a Program-block. Suppose

s1↾Data-LocSCM = s2↾Data-LocSCM. Suppose I is closed on s1 and halting

on s1. Then I is closed on s2 and halting on s2.

(38) For every state s of SCMPDS and for all Program-block I, J holds I is

closed on s iff I is closed on s+· Initialized(J).

(39) Let I, J be Program-block and s be a state of SCMPDS. Suppose I is

closed on s and halting on s. Then

(i) for every natural number k such that k ¬ LifeSpan(s+· Initialized(stop I))

holds IC(Computation(s+· Initialized(stop I)))(k) =

IC(Computation(s+· Initialized(stop I;J)))(k), and

(ii) (Computation(s+· Initialized(stop I)))(LifeSpan(s+· Initialized(stop I)))

↾Data-LocSCM = (Computation(s+· Initialized(stop I;J)))(LifeSpan(s+·

Initialized(stop I)))↾Data-LocSCM.

(40) Let I be a Program-block and k be a natural number. If I is closed

on s and halting on s and k < LifeSpan(s+· Initialized(stop I)), then

IC(Computation(s+· Initialized(stop I)))(k) ∈ dom I.

(41) Let I, J be Program-block, s be a state of SCMPDS, and k be a

natural number. Suppose I is closed on s and halting on s and k <

LifeSpan(s+· Initialized(stop I)). Then CurInstr((Computation(s+·

Initialized(stop I)))(k)) =

CurInstr((Computation(s+· Initialized(stop I;J)))(k)).

(42) Let I be a No-StopCode Program-block, s be a state of

SCMPDS, and k be a natural number. If I is closed on s

and halting on s and k < LifeSpan(s+· Initialized(stop I)), then

CurInstr((Computation(s+· Initialized(stop I)))(k)) 6= haltSCMPDS.

(43) Let I be a No-StopCode Program-block and s be a state

of SCMPDS. If I is closed on s and halting on s, then

IC(Computation(s+· Initialized(stop I)))(LifeSpan(s+· Initialized(stop I))) = inspos card I.



the construction and computation of . . . 223

(44) Let I, J be Program-block and s be a state of SCMPDS. Suppose I is

closed on s and halting on s. Then I;Goto(cardJ + 1);J is halting on s

and I;Goto(cardJ + 1);J is closed on s.

(45) Let I be a shiftable Program-block. Suppose Initialized(stop I) ⊆ s1 and

I is closed on s1. Let n be a natural number. Suppose Shift(stop I, n) ⊆ s2

and IC(s2) = insposn and s1↾Data-LocSCM = s2↾Data-LocSCM. Let i be a

natural number. Then IC(Computation(s1))(i) +n = IC(Computation(s2))(i) and

CurInstr((Computation(s1))(i)) = CurInstr((Computation(s2))(i)) and

(Computation(s1))(i)↾Data-LocSCM = (Computation(s2))(i)↾Data-LocSCM.

(46) Let s be a state of SCMPDS, I be a No-StopCode Program-block,

and J be a Program-block. If I is closed on s and halting on s, then

ICIExec(I;Goto(card J+1);J,s) = inspos card I + cardJ + 1.

(47) Let s be a state of SCMPDS, I be a No-StopCode Program-block,

and J be a Program-block. If I is closed on s and halting on s, then

IExec(I;Goto(cardJ + 1);J, s) = IExec(I, s)+·Start-At(inspos card I +

cardJ + 1).

(48) Let s be a state of SCMPDS and I be a No-StopCode Program-block.

If I is closed on s and halting on s, then ICIExec(I,s) = inspos card I.

3. The Construction of Conditional Statements

Let a be a Int position, let k be an integer, and let I, J be Program-block.

The functor if a = k then I else J yielding a Program-block is defined by:

(Def. 4) if a = k then I else J = ((a, k) <> 0 goto card I + 2);I;Goto(cardJ +

1);J.

The functor if a > k then I else J yielding a Program-block is defined by:

(Def. 5) if a > k then I else J = ((a, k) <= 0 goto card I + 2);I;Goto(cardJ +

1);J.

The functor if a < k then I else J yielding a Program-block is defined by:

(Def. 6) if a < k then I else J = ((a, k) >= 0 goto card I + 2);I;Goto(cardJ +

1);J.

Let a be a Int position, let k be an integer, and let I be a Program-block.

The functor if a = 0 then k else I yields a Program-block and is defined as

follows:

(Def. 7) if a = 0 then k else I = ((a, k) <> 0 goto card I + 1);I.

The functor if a 6= 0 then k else I yielding a Program-block is defined by:

(Def. 8) if a 6= 0 then k else I = ((a, k) <> 0 goto2);goto (card I + 1);I.

The functor if a > 0 then k else I yielding a Program-block is defined as fol-

lows:



224 jing-chao chen

(Def. 9) if a > 0 then k else I = ((a, k) <= 0 goto card I + 1);I.

The functor if a ¬ 0 then k else I yields a Program-block and is defined as

follows:

(Def. 10) if a ¬ 0 then k else I = ((a, k) <= 0 goto2);goto (card I + 1);I.

The functor if a < 0 then k else I yields a Program-block and is defined as

follows:

(Def. 11) if a < 0 then k else I = ((a, k) >= 0 goto card I + 1);I.

The functor if a ­ 0 then k else I yields a Program-block and is defined as

follows:

(Def. 12) if a ­ 0 then k else I = ((a, k) >= 0 goto2);goto (card I + 1);I.

4. The Computation of ”if var=0 then block1 else block2”

One can prove the following propositions:

(49) card(if a = k1 then I else J) = card I + cardJ + 2.

(50) inspos 0 ∈ dom(if a = k1 then I else J) and inspos 1 ∈ dom(if a =

k1 then I else J).

(51) (if a = k1 then I else J)(inspos 0) = (a, k1) <> 0 goto card I + 2.

(52) Let s be a state of SCMPDS, I, J be shiftable Program-block, a be a

Int position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) = 0 and

I is closed on s and halting on s. Then if a = k1 then I else J is closed

on s and if a = k1 then I else J is halting on s.

(53) Let s be a state of SCMPDS, I be a Program-block, J be a shifta-

ble Program-block, a be a Int position, and k1 be an integer. Suppose

s(DataLoc(s(a), k1)) 6= 0 and J is closed on s and halting on s. Then

if a = k1 then I else J is closed on s and if a = k1 then I else J is

halting on s.

(54) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, J be a shiftable Program-block, a be a Int position, and k1

be an integer. Suppose s(DataLoc(s(a), k1)) = 0 and I is closed

on s and halting on s. Then IExec(if a = k1 then I else J, s) =

IExec(I, s)+·Start-At(inspos card I + cardJ + 2).

(55) Let s be a state of SCMPDS, I be a Program-block, J be a

No-StopCode shiftable Program-block, a be a Int position, and k1

be an integer. Suppose s(DataLoc(s(a), k1)) 6= 0 and J is closed

on s and halting on s. Then IExec(if a = k1 then I else J, s) =

IExec(J, s)+·Start-At(inspos card I + cardJ + 2).



the construction and computation of . . . 225

Let I, J be shiftable parahalting Program-block, let a be a Int position,

and let k1 be an integer. Observe that if a = k1 then I else J is shiftable and

parahalting.

Let I, J be No-StopCode Program-block, let a be a Int position, and let k1

be an integer. Note that if a = k1 then I else J is No-StopCode.

We now state three propositions:

(56) Let s be a state of SCMPDS, I, J be No-StopCode shiftable para-

halting Program-block, a be a Int position, and k1 be an integer. Then

ICIExec(if a=k1 then I else J,s) = inspos card I + cardJ + 2.

(57) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-

ting Program-block, J be a shiftable Program-block, a, b be Int position,

and k1 be an integer. If s(DataLoc(s(a), k1)) = 0, then (IExec(if a =

k1 then I else J, s))(b) = (IExec(I, s))(b).

(58) Let s be a state of SCMPDS, I be a Program-block, J be a No-

StopCode parahalting shiftable Program-block, a, b be Int position,

and k1 be an integer. If s(DataLoc(s(a), k1)) 6= 0, then (IExec(if a =

k1 then I else J, s))(b) = (IExec(J, s))(b).

5. The Computation of ”if var=0 then block”

One can prove the following propositions:

(59) card(if a = 0 then k1 else I) = card I + 1.

(60) inspos 0 ∈ dom(if a = 0 then k1 else I).

(61) (if a = 0 then k1 else I)(inspos 0) = (a, k1) <> 0 goto card I + 1.

(62) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int

position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) = 0 and I is

closed on s and halting on s. Then if a = 0 then k1 else I is closed on s

and if a = 0 then k1 else I is halting on s.

(63) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-

sition, and k1 be an integer. If s(DataLoc(s(a), k1)) 6= 0, then if a =

0 then k1 else I is closed on s and if a = 0 then k1 else I is halting on

s.

(64) Let s be a state of SCMPDS, I be a No-StopCode shiftable

Program-block, a be a Int position, and k1 be an integer. Suppose

s(DataLoc(s(a), k1)) = 0 and I is closed on s and halting on s. Then

IExec(if a = 0 then k1 else I, s) = IExec(I, s)+·Start-At(inspos card I+

1).

(65) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-

tion, and k1 be an integer. If s(DataLoc(s(a), k1)) 6= 0, then IExec(if a =



226 jing-chao chen

0 then k1 else I, s) = s+·Start-At(inspos card I + 1).

Let I be a shiftable parahalting Program-block, let a be a Int position, and

let k1 be an integer. One can verify that if a = 0 then k1 else I is shiftable

and parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k1

be an integer. Observe that if a = 0 then k1 else I is No-StopCode.

Next we state three propositions:

(66) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-

ting Program-block, a be a Int position, and k1 be an integer. Then

ICIExec(if a=0 then k1 else I,s) = inspos card I + 1.

(67) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-

halting Program-block, a, b be Int position, and k1 be an integer. If

s(DataLoc(s(a), k1)) = 0, then (IExec(if a = 0 then k1 else I, s))(b) =

(IExec(I, s))(b).

(68) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,

and k1 be an integer. If s(DataLoc(s(a), k1)) 6= 0, then (IExec(if a =

0 then k1 else I, s))(b) = s(b).

6. The Computation of ”if var<>0 then block”

One can prove the following propositions:

(69) card(if a 6= 0 then k1 else I) = card I + 2.

(70) inspos 0 ∈ dom(if a 6= 0 then k1 else I) and inspos 1 ∈ dom(if a 6=

0 then k1 else I).

(71) (if a 6= 0 then k1 else I)(inspos 0) = (a, k1) <> 0 goto2 and (if a 6=

0 then k1 else I)(inspos 1) = goto (card I + 1).

(72) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int

position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) 6= 0 and I is

closed on s and halting on s. Then if a 6= 0 then k1 else I is closed on s

and if a 6= 0 then k1 else I is halting on s.

(73) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-

sition, and k1 be an integer. If s(DataLoc(s(a), k1)) = 0, then if a 6=

0 then k1 else I is closed on s and if a 6= 0 then k1 else I is halting on

s.

(74) Let s be a state of SCMPDS, I be a No-StopCode shiftable

Program-block, a be a Int position, and k1 be an integer. Suppose

s(DataLoc(s(a), k1)) 6= 0 and I is closed on s and halting on s. Then

IExec(if a 6= 0 then k1 else I, s) = IExec(I, s)+·Start-At(inspos card I+

2).



the construction and computation of . . . 227

(75) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-

tion, and k1 be an integer. If s(DataLoc(s(a), k1)) = 0, then IExec(if a 6=

0 then k1 else I, s) = s+·Start-At(inspos card I + 2).

Let I be a shiftable parahalting Program-block, let a be a Int position,

and let k1 be an integer. Observe that if a 6= 0 then k1 else I is shiftable and

parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k1

be an integer. One can verify that if a 6= 0 then k1 else I is No-StopCode.

One can prove the following three propositions:

(76) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-

ting Program-block, a be a Int position, and k1 be an integer. Then

ICIExec(if a6=0 then k1 else I,s) = inspos card I + 2.

(77) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-

halting Program-block, a, b be Int position, and k1 be an integer. If

s(DataLoc(s(a), k1)) 6= 0, then (IExec(if a 6= 0 then k1 else I, s))(b) =

(IExec(I, s))(b).

(78) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,

and k1 be an integer. If s(DataLoc(s(a), k1)) = 0, then (IExec(if a 6=

0 then k1 else I, s))(b) = s(b).

7. The Computation of ”if var>0 then block1 else block2”

We now state several propositions:

(79) card(if a > k1 then I else J) = card I + cardJ + 2.

(80) inspos 0 ∈ dom(if a > k1 then I else J) and inspos 1 ∈ dom(if a >

k1 then I else J).

(81) (if a > k1 then I else J)(inspos 0) = (a, k1) <= 0 goto card I + 2.

(82) Let s be a state of SCMPDS, I, J be shiftable Program-block, a be a

Int position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) > 0 and

I is closed on s and halting on s. Then if a > k1 then I else J is closed

on s and if a > k1 then I else J is halting on s.

(83) Let s be a state of SCMPDS, I be a Program-block, J be a shifta-

ble Program-block, a be a Int position, and k1 be an integer. Suppose

s(DataLoc(s(a), k1)) ¬ 0 and J is closed on s and halting on s. Then

if a > k1 then I else J is closed on s and if a > k1 then I else J is

halting on s.

(84) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, J be a shiftable Program-block, a be a Int position, and k1

be an integer. Suppose s(DataLoc(s(a), k1)) > 0 and I is closed



228 jing-chao chen

on s and halting on s. Then IExec(if a > k1 then I else J, s) =

IExec(I, s)+·Start-At(inspos card I + cardJ + 2).

(85) Let s be a state of SCMPDS, I be a Program-block, J be a

No-StopCode shiftable Program-block, a be a Int position, and k1

be an integer. Suppose s(DataLoc(s(a), k1)) ¬ 0 and J is closed

on s and halting on s. Then IExec(if a > k1 then I else J, s) =

IExec(J, s)+·Start-At(inspos card I + cardJ + 2).

Let I, J be shiftable parahalting Program-block, let a be a Int position,

and let k1 be an integer. Note that if a > k1 then I else J is shiftable and

parahalting.

Let I, J be No-StopCode Program-block, let a be a Int position, and let k1

be an integer. Note that if a > k1 then I else J is No-StopCode.

Next we state three propositions:

(86) Let s be a state of SCMPDS, I, J be No-StopCode shiftable para-

halting Program-block, a be a Int position, and k1 be an integer. Then

ICIExec(if a>k1 then I else J,s) = inspos card I + cardJ + 2.

(87) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-

ting Program-block, J be a shiftable Program-block, a, b be Int position,

and k1 be an integer. If s(DataLoc(s(a), k1)) > 0, then (IExec(if a >

k1 then I else J, s))(b) = (IExec(I, s))(b).

(88) Let s be a state of SCMPDS, I be a Program-block, J be a No-

StopCode parahalting shiftable Program-block, a, b be Int position,

and k1 be an integer. If s(DataLoc(s(a), k1)) ¬ 0, then (IExec(if a >

k1 then I else J, s))(b) = (IExec(J, s))(b).

8. The Computation of ”if var>0 then block”

The following propositions are true:

(89) card(if a > 0 then k1 else I) = card I + 1.

(90) inspos 0 ∈ dom(if a > 0 then k1 else I).

(91) (if a > 0 then k1 else I)(inspos 0) = (a, k1) <= 0 goto card I + 1.

(92) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int

position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) > 0 and I is

closed on s and halting on s. Then if a > 0 then k1 else I is closed on s

and if a > 0 then k1 else I is halting on s.

(93) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-

sition, and k1 be an integer. If s(DataLoc(s(a), k1)) ¬ 0, then if a >

0 then k1 else I is closed on s and if a > 0 then k1 else I is halting on

s.



the construction and computation of . . . 229

(94) Let s be a state of SCMPDS, I be a No-StopCode shiftable

Program-block, a be a Int position, and k1 be an integer. Suppose

s(DataLoc(s(a), k1)) > 0 and I is closed on s and halting on s. Then

IExec(if a > 0 then k1 else I, s) = IExec(I, s)+·Start-At(inspos card I+

1).

(95) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-

tion, and k1 be an integer. If s(DataLoc(s(a), k1)) ¬ 0, then IExec(if a >

0 then k1 else I, s) = s+·Start-At(inspos card I + 1).

Let I be a shiftable parahalting Program-block, let a be a Int position,

and let k1 be an integer. Observe that if a > 0 then k1 else I is shiftable and

parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k1

be an integer. Observe that if a > 0 then k1 else I is No-StopCode.

The following propositions are true:

(96) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-

ting Program-block, a be a Int position, and k1 be an integer. Then

ICIExec(if a>0 then k1 else I,s) = inspos card I + 1.

(97) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-

halting Program-block, a, b be Int position, and k1 be an integer. If

s(DataLoc(s(a), k1)) > 0, then (IExec(if a > 0 then k1 else I, s))(b) =

(IExec(I, s))(b).

(98) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,

and k1 be an integer. If s(DataLoc(s(a), k1)) ¬ 0, then (IExec(if a >

0 then k1 else I, s))(b) = s(b).

9. The Computation of ”if var<=0 then block”

We now state several propositions:

(99) card(if a ¬ 0 then k1 else I) = card I + 2.

(100) inspos 0 ∈ dom(if a ¬ 0 then k1 else I) and inspos 1 ∈ dom(if a ¬

0 then k1 else I).

(101) (if a ¬ 0 then k1 else I)(inspos 0) = (a, k1) <= 0 goto2 and (if a ¬

0 then k1 else I)(inspos 1) = goto (card I + 1).

(102) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int

position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) ¬ 0 and I is

closed on s and halting on s. Then if a ¬ 0 then k1 else I is closed on s

and if a ¬ 0 then k1 else I is halting on s.

(103) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-

sition, and k1 be an integer. If s(DataLoc(s(a), k1)) > 0, then if a ¬



230 jing-chao chen

0 then k1 else I is closed on s and if a ¬ 0 then k1 else I is halting on

s.

(104) Let s be a state of SCMPDS, I be a No-StopCode shiftable

Program-block, a be a Int position, and k1 be an integer. Suppose

s(DataLoc(s(a), k1)) ¬ 0 and I is closed on s and halting on s. Then

IExec(if a ¬ 0 then k1 else I, s) = IExec(I, s)+·Start-At(inspos card I+

2).

(105) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-

tion, and k1 be an integer. If s(DataLoc(s(a), k1)) > 0, then IExec(if a ¬

0 then k1 else I, s) = s+·Start-At(inspos card I + 2).

Let I be a shiftable parahalting Program-block, let a be a Int position,

and let k1 be an integer. Observe that if a ¬ 0 then k1 else I is shiftable and

parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k1

be an integer. Note that if a ¬ 0 then k1 else I is No-StopCode.

We now state three propositions:

(106) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-

ting Program-block, a be a Int position, and k1 be an integer. Then

ICIExec(if a¬0 then k1 else I,s) = inspos card I + 2.

(107) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-

halting Program-block, a, b be Int position, and k1 be an integer. If

s(DataLoc(s(a), k1)) ¬ 0, then (IExec(if a ¬ 0 then k1 else I, s))(b) =

(IExec(I, s))(b).

(108) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,

and k1 be an integer. If s(DataLoc(s(a), k1)) > 0, then (IExec(if a ¬

0 then k1 else I, s))(b) = s(b).

10. The Computation of ”if var<0 then block1 else block2”

One can prove the following propositions:

(109) card(if a < k1 then I else J) = card I + cardJ + 2.

(110) inspos 0 ∈ dom(if a < k1 then I else J) and inspos 1 ∈ dom(if a <

k1 then I else J).

(111) (if a < k1 then I else J)(inspos 0) = (a, k1) >= 0 goto card I + 2.

(112) Let s be a state of SCMPDS, I, J be shiftable Program-block, a be a

Int position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) < 0 and

I is closed on s and halting on s. Then if a < k1 then I else J is closed

on s and if a < k1 then I else J is halting on s.



the construction and computation of . . . 231

(113) Let s be a state of SCMPDS, I be a Program-block, J be a shifta-

ble Program-block, a be a Int position, and k1 be an integer. Suppose

s(DataLoc(s(a), k1)) ­ 0 and J is closed on s and halting on s. Then

if a < k1 then I else J is closed on s and if a < k1 then I else J is

halting on s.

(114) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, J be a shiftable Program-block, a be a Int position, and k1

be an integer. Suppose s(DataLoc(s(a), k1)) < 0 and I is closed

on s and halting on s. Then IExec(if a < k1 then I else J, s) =

IExec(I, s)+·Start-At(inspos card I + cardJ + 2).

(115) Let s be a state of SCMPDS, I be a Program-block, J be a

No-StopCode shiftable Program-block, a be a Int position, and k1

be an integer. Suppose s(DataLoc(s(a), k1)) ­ 0 and J is closed

on s and halting on s. Then IExec(if a < k1 then I else J, s) =

IExec(J, s)+·Start-At(inspos card I + cardJ + 2).

Let I, J be shiftable parahalting Program-block, let a be a Int position,

and let k1 be an integer. Observe that if a < k1 then I else J is shiftable and

parahalting.

Let I, J be No-StopCode Program-block, let a be a Int position, and let k1

be an integer. Note that if a < k1 then I else J is No-StopCode.

Next we state three propositions:

(116) Let s be a state of SCMPDS, I, J be No-StopCode shiftable para-

halting Program-block, a be a Int position, and k1 be an integer. Then

ICIExec(if a<k1 then I else J,s) = inspos card I + cardJ + 2.

(117) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-

ting Program-block, J be a shiftable Program-block, a, b be Int position,

and k1 be an integer. If s(DataLoc(s(a), k1)) < 0, then (IExec(if a <

k1 then I else J, s))(b) = (IExec(I, s))(b).

(118) Let s be a state of SCMPDS, I be a Program-block, J be a No-

StopCode parahalting shiftable Program-block, a, b be Int position,

and k1 be an integer. If s(DataLoc(s(a), k1)) ­ 0, then (IExec(if a <

k1 then I else J, s))(b) = (IExec(J, s))(b).

11. The Computation of ”if var<0 then block”

One can prove the following propositions:

(119) card(if a < 0 then k1 else I) = card I + 1.

(120) inspos 0 ∈ dom(if a < 0 then k1 else I).

(121) (if a < 0 then k1 else I)(inspos 0) = (a, k1) >= 0 goto card I + 1.



232 jing-chao chen

(122) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int

position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) < 0 and I is

closed on s and halting on s. Then if a < 0 then k1 else I is closed on s

and if a < 0 then k1 else I is halting on s.

(123) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-

sition, and k1 be an integer. If s(DataLoc(s(a), k1)) ­ 0, then if a <

0 then k1 else I is closed on s and if a < 0 then k1 else I is halting on

s.

(124) Let s be a state of SCMPDS, I be a No-StopCode shiftable

Program-block, a be a Int position, and k1 be an integer. Suppose

s(DataLoc(s(a), k1)) < 0 and I is closed on s and halting on s. Then

IExec(if a < 0 then k1 else I, s) = IExec(I, s)+·Start-At(inspos card I+

1).

(125) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-

tion, and k1 be an integer. If s(DataLoc(s(a), k1)) ­ 0, then IExec(if a <

0 then k1 else I, s) = s+·Start-At(inspos card I + 1).

Let I be a shiftable parahalting Program-block, let a be a Int position,

and let k1 be an integer. Note that if a < 0 then k1 else I is shiftable and

parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k1

be an integer. One can check that if a < 0 then k1 else I is No-StopCode.

Next we state three propositions:

(126) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-

ting Program-block, a be a Int position, and k1 be an integer. Then

ICIExec(if a<0 then k1 else I,s) = inspos card I + 1.

(127) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-

halting Program-block, a, b be Int position, and k1 be an integer. If

s(DataLoc(s(a), k1)) < 0, then (IExec(if a < 0 then k1 else I, s))(b) =

(IExec(I, s))(b).

(128) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,

and k1 be an integer. If s(DataLoc(s(a), k1)) ­ 0, then (IExec(if a <

0 then k1 else I, s))(b) = s(b).

12. The Computation of ”if var>=0 then block”

The following propositions are true:

(129) card(if a ­ 0 then k1 else I) = card I + 2.

(130) inspos 0 ∈ dom(if a ­ 0 then k1 else I) and inspos 1 ∈ dom(if a ­

0 then k1 else I).



the construction and computation of . . . 233

(131) (if a ­ 0 then k1 else I)(inspos 0) = (a, k1) >= 0 goto2 and (if a ­

0 then k1 else I)(inspos 1) = goto (card I + 1).

(132) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int

position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) ­ 0 and I is

closed on s and halting on s. Then if a ­ 0 then k1 else I is closed on s

and if a ­ 0 then k1 else I is halting on s.

(133) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-

sition, and k1 be an integer. If s(DataLoc(s(a), k1)) < 0, then if a ­

0 then k1 else I is closed on s and if a ­ 0 then k1 else I is halting on

s.

(134) Let s be a state of SCMPDS, I be a No-StopCode shiftable

Program-block, a be a Int position, and k1 be an integer. Suppose

s(DataLoc(s(a), k1)) ­ 0 and I is closed on s and halting on s. Then

IExec(if a ­ 0 then k1 else I, s) = IExec(I, s)+·Start-At(inspos card I+

2).

(135) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-

tion, and k1 be an integer. If s(DataLoc(s(a), k1)) < 0, then IExec(if a ­

0 then k1 else I, s) = s+·Start-At(inspos card I + 2).

Let I be a shiftable parahalting Program-block, let a be a Int position,

and let k1 be an integer. Note that if a ­ 0 then k1 else I is shiftable and

parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k1

be an integer. Observe that if a ­ 0 then k1 else I is No-StopCode.

We now state three propositions:

(136) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-

ting Program-block, a be a Int position, and k1 be an integer. Then

ICIExec(if a­0 then k1 else I,s) = inspos card I + 2.

(137) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-

halting Program-block, a, b be Int position, and k1 be an integer. If

s(DataLoc(s(a), k1)) ­ 0, then (IExec(if a ­ 0 then k1 else I, s))(b) =

(IExec(I, s))(b).

(138) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,

and k1 be an integer. If s(DataLoc(s(a), k1)) < 0, then (IExec(if a ­

0 then k1 else I, s))(b) = s(b).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized
Mathematics, 4(1):61–67, 1993.



234 jing-chao chen

[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[6] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[7] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized
Mathematics, 8(1):193–199, 1999.

[8] Jing-Chao Chen. Computation of two consecutive program blocks for SCMPDS. Forma-
lized Mathematics, 8(1):211–217, 1999.

[9] Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.
Formalized Mathematics, 8(1):201–210, 1999.

[10] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183–191, 1999.

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[13] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[14] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263–264, 1990.

[15] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[17] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[19] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received June 15, 1999


