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Summary. In this article,a program block is defined as a finite sequence of
instructions stored consecutively on initial positions. Based on this definition,any
program block with more than two instructions can be viewed as the combina-
tion of two smaller program blocks. To describe the computation of a program
block by the result of its two sub-blocks, we introduce the notions of paraclosed,
parahalting, valid, and shiftable, the meaning of which may be stated as follows:

- a program is paraclosed if and only if any state containing it is closed,
- a program is parahalting if and only if any state containing it is halting,

- in a program block, a jumping instruction is valid if its jumping offset is
valid,

- a program block is shiftable if it does not contain any return and savelC
instructions,and each instruction in it is valid.

When a program block is shiftable, its computing result does not depend on its

storage position.

MML Identifier: SCMPDS_4.
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1. DEFINITION OF A PROGRAM BLOCK AND ITS BASIC PROPERTIES

A Program-block is an initial programmed finite partial state of SCMPDS.
We adopt the following convention: m, n are natural numbers, ¢, j, k are
instructions of SCMPDS, and I, J, K are Program-block.
Let us consider i. The functor Load(:) yielding a Program-block is defined
as follows:
(Def. 1) Load(i) = inspos 0——1.
Let us consider i. Note that Load(7) is non empty.
Next we state the proposition

(1) For every Program-block P and for every n holds n < card P iff
insposn € dom P.

Let I be an initial finite partial state of SCMPDS. Note that ProgramPart([)
is initial.
Next we state four propositions:
(2) dom I misses dom Shift(.J, card I).
(3) For every programmed finite partial state I of SCMPDS holds
card Shift(/,m) = card I.
(4) For all finite partial states I, J of SCMPDS holds ProgramPart(/+-J) =
ProgramPart(I)+- ProgramPart(.J).
(5) For all finite partial states I, J of SCMPDS holds Shift(ProgramPart
(I4-J),n) = Shift(ProgramPart(I), n)+- Shift(ProgramPart(.J), n).
We use the following convention: a, b are Int position, s, s1, sg are states of
SCMPDS, and kq, ko are integers.
Let us consider I. The functor Initialized([) yields a finite partial state of
SCMPDS and is defined as follows:
(Def. 2) Initialized(l) = I+- Start-At(inspos 0).

We now state a number of propositions:

(6) InsCode(i) € {0,1,4,5,6} or (Exec(, s))(ICscmpps) = Next(ICy).

(7) ICscmpps € dom Initialized(1).

(8) ICritialized(r) = insposO0.

(9) I C Initialized([).
(10) s and s+-I are equal outside the instruction locations of SCMPDS.
(11) Let s1, s2 be states of SCMPDS. Suppose IC(, ) = ICy,) and for every

Int position a holds s1(a) = sa(a). Then s; and sg are equal outside the
instruction locations of SCMPDS.
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(13)2 Suppose s; and so are equal outside the instruction locations of
SCMPDS. Let a be a Int position. Then si(a) = sa(a).

(14) 1If s; and sy are equal outside the instruction locations of SCMPDS, then
s1(Dataloc(s1(a), k1)) = se(DataLoc(sz2(a), k1)).

(15) Suppose s; and sp are equal outside the instruction locations of
SCMPDS. Then Exec(i, s1) and Exec(i, s2) are equal outside the instruc-
tion locations of SCMPDS.

(16) Initialized(I)[the instruction locations of SCMPDS = I.

(17) For all natural numbers kj, ky such that k; # k2 holds DataLoc(k,0) #
DataLoc(kz,0).
(18) For every Int position d; there exists a natural number 7 such that d; =
DataLoc(7,0).
The scheme SCMPDSEz deals with a unary functor F yielding an instruction
of SCMPDS, a unary functor G yielding an integer, and an instruction-location
A of SCMPDS, and states that:
There exists a state S of SCMPDS such that ICs = A
and for every natural number i holds S(insposi) = F(i) and
S(DataLoc(7,0)) = G(i)

for all values of the parameters.

Next we state a number of propositions:

(19) For every state s of SCMPDS holds doms = {ICscmpps}t U
Data-Locgcy U the instruction locations of SCMPDS.

(20) Let s be a state of SCMPDS and z be a set. Suppose x € dom s. Then
x is a Int position or x = ICgcmpps or = is an instruction-location of
SCMPDS.

(21) Let s1, s2 be states of SCMPDS. Then for every instruction-location !
of SCMPDS holds s;(l) = s2(1) if and only if s; [the instruction locations
of SCMPDS = sy[the instruction locations of SCMPDS.

(22) For every instruction-location ¢ of SCMPDS holds i ¢ Data-Locgcm.

(23) For all states si, so of SCMPDS holds for every Int position a holds
s1(a) = sa(a) iff s1[Data-Locgcy = s2[Data-Locgcm.

(24) Let s1, s be states of SCMPDS. Suppose s; and s9 are equal out-
side the instruction locations of SCMPDS. Then si[Data-Locscmy =
so[Data-Locgcm.

(25) For all states s, s3 of SCMPDS and for every set A holds (s3+-s[A)[A =
s[A.

(26) For all Program-block I, J holds I and J are equal outside the instruction
locations of SCMPDS.

2The proposition (12) has been removed.
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(27) For every Program-block I holds domInitialized(I) = domlI U

{ICscmpDs}-

(28) For every Program-block I and for every set x such that = €
dom Initialized(I) holds = € dom I or z = ICscmpDS-

(29) For every Program-block I holds (Initialized(I))(ICscmpps) = inspos 0.
(30) For every Program-block I holds ICscmpps ¢ dom 1.
(31) For every Program-block I and for every Int position a holds a ¢
dom Initialized (7).
In the sequel z denotes a set.
The following propositions are true:
(32) If x € dom I, then I(x) = (I+- Start-At(insposn))(x).
(33) For every Program-block I and for every set x such that € dom I holds
I(x) = (Initialized(1))(x).
(34) For all Program-block I, J and for every state s of SCMPDS such that
Initialized(J) C s holds s+- Initialized(I) = s+-1I.
(35) For all Program-block I, J and for every state s of SCMPDS such that
Initialized(J) C s holds Initialized(I) C s+-1I.

(36) Let I, J be Program-block and s be a state of SCMPDS. Then
s+- Initialized(I) and s+- Initialized(J) are equal outside the instruction
locations of SCMPDS.

2. COMBINING TWO CONSECUTIVE BLOCKS INTO ONE PROGRAM BLOCK

Let I, J be Program-block. The functor I;J yields a Program-block and is
defined by:

(Def. 3) I;J = I+ Shift(J, card I).
One can prove the following propositions:

(37) For all Program-block I, J and for every instruction-location [ of
SCMPDS such that [ € dom I holds (Z;J)(l) = I(1).

(38) For all Program-block I, J and for every instruction-location [ of
SCMPDS such that [ € dom J holds (I;J)({ + card I) = J(1).

) For all Program-block I, J holds dom I C dom(1;.J).
) For all Program-block I, J holds I C I;J.
41) For all Program-block I, J holds I+-(I;J) = I;J.
) For all Program-block I, J holds Initialized(I)+-(I;J) = Initialized(/;.J).
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3. COMBINING A BLOCK AND A INSTRUCTION INTO ONE PROGRAM BLOCK

Let us consider ¢, J. The functor ¢;J yielding a Program-block is defined by:
(Def. 4) 4;J = Load(i);J.
Let us consider I, j. The functor I;j yields a Program-block and is defined
by:
(Def. 5) I;j = I;Load(y).
Let us consider 4, j. The functor ;5 yielding a Program-block is defined as
follows:
(Def. 6) ;5 = Load(7); Load ().

The following propositions are true:

(43) ;5 = Load(1);j.

(44) 435 = i; Load(y).

(45) card(I;J) = card I + card J.

(46) (I3J);K = I(J;K).

(47)  (I;J)sk = I;( k).

(48) (L;j);K = I;(j;K).

(49)  (Li):k = L;(jsk)

(50)  (4J):K = i5(J;K)

(51)  (i5J)sk = i5(J;k)

(52) (i) K = 4;(j;K)

(53)  (i54)sk = 4;(jsk)

(54) dom I N dom Start-At(insposn) = (.

(65) Start-At(inspos0) C Initialized([).

(56) If I+4- Start-At(insposn) C s, then I C s.
(57) If Initialized(I) C s, then I C s.

(58) (I+- Start-At(insposn))[the instruction locations of SCMPDS = I.

In the sequel [, I; denote instructions-locations of SCMPDS.
Next we state four propositions:

(59) a ¢ dom Start-At(l).
(60) 11 ¢ dom Start-At(l).
(61) a ¢ dom(I+- Start-At(l)).
(62) s+-I+- Start-At(inspos 0) = s+- Start-At(inspos 0)+-1.
Let s be a state of SCMPDS, let 2 be a Int position, and let k£ be an integer.
Then s +- (I, k) is a state of SCMPDS.
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4. THE NOTIONS OF PARACLOSED, PARAHALTING AND THEIR BASIC
PROPERTIES

Let I be a Program-block. The functor stop I yielding a Program-block is
defined as follows:
(Def. 7) stopI = I; SCMPDS — Stop.
Let I be a Program-block and let s be a state of SCMPDS. The functor
IExec(I, s) yielding a state of SCMPDS is defined as follows:
(Def. 8) IExec(I,s) = Result(s+- Initialized(stop I))+-s[the instruction loca-
tions of SCMPDS.
Let I be a Program-block. We say that I is paraclosed if and only if:
(Def. 9) For every state s of SCMPDS and for every natural number n such that
Initialized(stop I) C s holds IC(gomputation(s))(n) € domstop 1.
We say that I is parahalting if and only if:
(Def. 10) Initialized(stop I) is halting.
Let us note that there exists a Program-block which is parahalting.
One can prove the following proposition

(63) For every parahalting Program-block I such that Initialized(stop I) C s
holds s is halting.

Let I be a parahalting Program-block. Note that Initialized(stop I) is hal-
ting.
Let I3, I4 be instructions-locations of SCMPDS and let a, b be instructions
of SCMPDS. Then [l3 — a,ly — b] is a finite partial state of SCMPDS.
One can prove the following propositions:
(64) For every integer k such that k # 0 holds goto k # haltscnmpps.
(65) IC, # Next(IC).
(66) so+-[IC(,,) — goto 1,Next(IC,,)) — goto (—1)] is not halting.
(67) Suppose that
(i) s; and sy are equal outside the instruction locations of SCMPDS,
(i) IC s,
(ili) I C s9, and
(iv)  for every m such that m < n holds IC computation(ss))(m) € dom I.
Let given m. Suppose m < n. Then (Computation(s;))(m) and
(Computation(sz))(m) are equal outside the instruction locations of
SCMPDS.

(68) For every state s of SCMPDS and for every instruction-location [ of
SCMPDS holds [ € dom s.

In the sequel [y, l5 are instructions-locations of SCMPDS and i1, io are
instructions of SCMPDS.

=~
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The following propositions are true:
(69) s+-[l1 — i1,l5 — 12 = s+ (I1,11) + (I5,12).
(70) Next(insposn) = insposn + 1.
(71) IfICs ¢ dom I, then Next(IC;) ¢ dom I.
Let us mention that every Program-block which is parahalting is also parac-
losed.
We now state several propositions:
(72) dom SCMPDS — Stop = {inspos 0}.
(73) inspos0 € dom SCMPDS — Stop and (SCMPDS — Stop)(inspos0) =
haltscmpps.
(74) card SCMPDS — Stop = 1.
(75) insposO € domstop I.
(76) Let p be a programmed finite partial state of SCMPDS, k be a natural

number, and i3 be an instruction-location of SCMPDS. If i3 € dom p, then
i + k € dom Shift(p, k).

5. SHIFTABILITY OF PROGRAM BLOCKS AND INSTRUCTIONS

Let ¢ be an instruction of SCMPDS and let n be a natural number. We say
that ¢ valid at n if and only if the conditions (Def. 11) are satisfied.
(Def. 11)(1)  If InsCode(i) = 0, then there exists k; such that ¢ = goto k; and
n+ki >0,
(ii)  if InsCode(i) = 4, then there exist a, k1, k2 such that i = (a, k1) <>
0_gotoky and n + ko > 0,
(iii)  if InsCode(i) = 5, then there exist a, k1, k2 such that i = (a,k1) <=
0_gotoky and n + ko > 0, and
(iv)  if InsCode(i) = 6, then there exist a, ki, k2 such that i = (a, k1) >=
0_gotoks and n + ko > 0.
One can prove the following proposition
(77) Let ¢ be an instruction of SCMPDS and m, n be natural numbers. If
valid at m and m < n, then 7 valid at n.

Let I be a finite partial state of SCMPDS. We say that I; is shiftable if and
only if:
(Def. 12) For all n, i such that insposn € domI; and i = Ij(insposn) holds
InsCode(i) # 1 and InsCode(i) # 3 and i valid at n.

Let us mention that there exists a Program-block which is parahalting and
shiftable.
Let i be an instruction of SCMPDS. We say that i is shiftable if and only if:
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(Def. 13) InsCode(i) = 2 or InsCode(i) > 6.
One can check that there exists an instruction of SCMPDS which is shiftable.
Let us consider a, k1. Observe that a:=k; is shiftable.
Let us consider a, k;, k2. One can check that ay,:=ks is shiftable.
Let us consider a, k1, ka. Observe that AddTo(a, k1, k2) is shiftable.
Let us consider a, b, k1, ko. One can check the following observations:
* AddTo(a, ki, b, k) is shiftable,
*x  SubFrom(a, k1, b, ko) is shiftable,
x  MultBy(a, k1, b, ko) is shiftable,
«  Divide(a, k1, b, k2) is shiftable, and
x  (a,ky) := (b, ko) is shiftable.
Let I, J be shiftable Program-block. Observe that I;J is shiftable.
Let i be a shiftable instruction of SCMPDS. Observe that Load(7) is shifta-
ble.
Let ¢ be a shiftable instruction of SCMPDS and let J be a shiftable Program-
block. Observe that i;J is shiftable.
Let I be a shiftable Program-block and let j be a shiftable instruction of
SCMPDS. Observe that I;j is shiftable.
Let 4, j be shiftable instructions of SCMPDS. Note that ;5 is shiftable.
Let us note that SCMPDS — Stop is parahalting and shiftable.
Let I be a shiftable Program-block. One can verify that stop [ is shiftable.
Next we state the proposition
(78) For every shiftable Program-block I and for every integer k; such that
card I + k1 > 0 holds I;goto ki is shiftable.
Let n be a natural number. Note that Load(goto n) is shiftable.
One can prove the following proposition
(79) Let I be a shiftable Program-block, ki, k2 be integers, and a be a Int
position. If card I + ko > 0, then I;((a, k1) <> 0_gotoks) is shiftable.
Let k1 be an integer, let a be a Int position, and let n be a natural number.
Note that Load((a, k1) <> 0_goton) is shiftable.
Next we state the proposition
(80) Let I be a shiftable Program-block, ki, k2 be integers, and a be a Int
position. If card I + ko > 0, then I;((a, k1) <= 0_gotoks) is shiftable.
Let k1 be an integer, let a be a Int position, and let n be a natural number.
Observe that Load((a, k1) <= 0_goton) is shiftable.
One can prove the following proposition
(81) Let I be a shiftable Program-block, ki, ks be integers, and a be a Int
position. If card I + ko > 0, then I;((a, k1) >= 0_gotoks) is shiftable.
Let k1 be an integer, let a be a Int position, and let n be a natural number.
Observe that Load((a, k1) >= 0_goton) is shiftable.
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We now state three propositions:

(82) Let s1, s2 be states of SCMPDS, n, m be natural numbers, and k; be

an integer. If IC;,) = insposm and m + k1 > 0 and IC, ) + n = ICy,),
then ICplusConst(s1, k1) + n = ICplusConst(s2, k7).

(83) Let s1, so be states of SCMPDS, n, m be natural numbers, and i be

an instruction of SCMPDS. Suppose IC(, ) = insposm and i valid at m
and InsCode(7) # 1 and InsCode(i) # 3 and IC(,,) + n = IC(,) and
s1[Data-Locsom = sz2[Data-Locgem. Then ICgyec(is;) + 7 = ICExec(i,s0)
and Exec(i, s1) [Data-Locgom = Exec(i, s2) [Data-Locgcom.

(84) Let J be a parahalting shiftable Program-block. Suppose Initialized(stop

J) C s1. Let n be a natural number. Suppose Shift(stop J,n) C sy and
IC,,) = insposn and s; [Data-Locgem = s2[Data-Locgem. Let @ be a na-
tural number. Then IC(Computation(sl))(i) +n = IC(Computation(sg))(i) and
Curlnstr((Computation(s;))(i)) = Curlnstr((Computation(sz2))(i)) and
(Computation(sy))(7) [Data-Locgcy = (Computation(se))(i) [Data-Locgc.
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