
FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999

University of Białystok

The Construction and Shiftability of

Program Blocks for SCMPDS1

Jing-Chao Chen

Shanghai Jiaotong University

Summary. In this article,a program block is defined as a finite sequence of
instructions stored consecutively on initial positions. Based on this definition,any
program block with more than two instructions can be viewed as the combina-
tion of two smaller program blocks. To describe the computation of a program
block by the result of its two sub-blocks, we introduce the notions of paraclosed,
parahalting, valid, and shiftable, the meaning of which may be stated as follows:

- a program is paraclosed if and only if any state containing it is closed,

- a program is parahalting if and only if any state containing it is halting,

- in a program block, a jumping instruction is valid if its jumping offset is
valid,

- a program block is shiftable if it does not contain any return and saveIC
instructions,and each instruction in it is valid.

When a program block is shiftable, its computing result does not depend on its
storage position.

MML Identifier: SCMPDS 4.

The articles [17], [23], [12], [24], [5], [6], [20], [22], [2], [4], [11], [7], [13], [14], [18],

[15], [3], [10], [9], [21], [19], [8], [1], and [16] provide the notation and terminology

for this paper.

1This research is partially supported by the National Natural Science Foundation of China
Grant No. 69873033.
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1. Definition of a Program Block and its Basic Properties

A Program-block is an initial programmed finite partial state of SCMPDS.

We adopt the following convention: m, n are natural numbers, i, j, k are

instructions of SCMPDS, and I, J , K are Program-block.

Let us consider i. The functor Load(i) yielding a Program-block is defined

as follows:

(Def. 1) Load(i) = inspos 0 7−→. i.

Let us consider i. Note that Load(i) is non empty.

Next we state the proposition

(1) For every Program-block P and for every n holds n < cardP iff

insposn ∈ domP.

Let I be an initial finite partial state of SCMPDS. Note that ProgramPart(I)

is initial.

Next we state four propositions:

(2) dom I misses domShift(J, card I).

(3) For every programmed finite partial state I of SCMPDS holds

card Shift(I, m) = card I.

(4) For all finite partial states I, J of SCMPDS holds ProgramPart(I+·J) =

ProgramPart(I)+·ProgramPart(J).

(5) For all finite partial states I, J of SCMPDS holds Shift(ProgramPart

(I+·J), n) = Shift(ProgramPart(I), n)+·Shift(ProgramPart(J), n).

We use the following convention: a, b are Int position, s, s1, s2 are states of

SCMPDS, and k1, k2 are integers.

Let us consider I. The functor Initialized(I) yields a finite partial state of

SCMPDS and is defined as follows:

(Def. 2) Initialized(I) = I+·Start-At(inspos 0).

We now state a number of propositions:

(6) InsCode(i) ∈ {0, 1, 4, 5, 6} or (Exec(i, s))(ICSCMPDS) = Next(ICs).

(7) ICSCMPDS ∈ dom Initialized(I).

(8) ICInitialized(I) = inspos 0.

(9) I ⊆ Initialized(I).

(10) s and s+·I are equal outside the instruction locations of SCMPDS.

(11) Let s1, s2 be states of SCMPDS. Suppose IC(s1) = IC(s2) and for every

Int position a holds s1(a) = s2(a). Then s1 and s2 are equal outside the

instruction locations of SCMPDS.
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(13)2 Suppose s1 and s2 are equal outside the instruction locations of

SCMPDS. Let a be a Int position. Then s1(a) = s2(a).

(14) If s1 and s2 are equal outside the instruction locations of SCMPDS, then

s1(DataLoc(s1(a), k1)) = s2(DataLoc(s2(a), k1)).

(15) Suppose s1 and s2 are equal outside the instruction locations of

SCMPDS. Then Exec(i, s1) and Exec(i, s2) are equal outside the instruc-

tion locations of SCMPDS.

(16) Initialized(I)↾the instruction locations of SCMPDS = I.

(17) For all natural numbers k1, k2 such that k1 6= k2 holds DataLoc(k1, 0) 6=

DataLoc(k2, 0).

(18) For every Int position d1 there exists a natural number i such that d1 =

DataLoc(i, 0).

The scheme SCMPDSEx deals with a unary functor F yielding an instruction

of SCMPDS, a unary functor G yielding an integer, and an instruction-location

A of SCMPDS, and states that:

There exists a state S of SCMPDS such that ICS = A

and for every natural number i holds S(inspos i) = F(i) and

S(DataLoc(i, 0)) = G(i)

for all values of the parameters.

Next we state a number of propositions:

(19) For every state s of SCMPDS holds dom s = {ICSCMPDS} ∪

Data-LocSCM ∪ the instruction locations of SCMPDS.

(20) Let s be a state of SCMPDS and x be a set. Suppose x ∈ dom s. Then

x is a Int position or x = ICSCMPDS or x is an instruction-location of

SCMPDS.

(21) Let s1, s2 be states of SCMPDS. Then for every instruction-location l

of SCMPDS holds s1(l) = s2(l) if and only if s1↾the instruction locations

of SCMPDS = s2↾the instruction locations of SCMPDS.

(22) For every instruction-location i of SCMPDS holds i /∈ Data-LocSCM.

(23) For all states s1, s2 of SCMPDS holds for every Int position a holds

s1(a) = s2(a) iff s1↾Data-LocSCM = s2↾Data-LocSCM.

(24) Let s1, s2 be states of SCMPDS. Suppose s1 and s2 are equal out-

side the instruction locations of SCMPDS. Then s1↾Data-LocSCM =

s2↾Data-LocSCM.

(25) For all states s, s3 of SCMPDS and for every set A holds (s3+·s↾A)↾A =

s↾A.

(26) For all Program-block I, J holds I and J are equal outside the instruction

locations of SCMPDS.

2The proposition (12) has been removed.
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(27) For every Program-block I holds dom Initialized(I) = dom I ∪

{ICSCMPDS}.

(28) For every Program-block I and for every set x such that x ∈

dom Initialized(I) holds x ∈ dom I or x = ICSCMPDS.

(29) For every Program-block I holds (Initialized(I))(ICSCMPDS) = inspos 0.

(30) For every Program-block I holds ICSCMPDS /∈ dom I.

(31) For every Program-block I and for every Int position a holds a /∈

dom Initialized(I).

In the sequel x denotes a set.

The following propositions are true:

(32) If x ∈ dom I, then I(x) = (I+·Start-At(insposn))(x).

(33) For every Program-block I and for every set x such that x ∈ dom I holds

I(x) = (Initialized(I))(x).

(34) For all Program-block I, J and for every state s of SCMPDS such that

Initialized(J) ⊆ s holds s+· Initialized(I) = s+·I.

(35) For all Program-block I, J and for every state s of SCMPDS such that

Initialized(J) ⊆ s holds Initialized(I) ⊆ s+·I.

(36) Let I, J be Program-block and s be a state of SCMPDS. Then

s+· Initialized(I) and s+· Initialized(J) are equal outside the instruction

locations of SCMPDS.

2. Combining two Consecutive Blocks into One Program Block

Let I, J be Program-block. The functor I;J yields a Program-block and is

defined by:

(Def. 3) I;J = I+·Shift(J, card I).

One can prove the following propositions:

(37) For all Program-block I, J and for every instruction-location l of

SCMPDS such that l ∈ dom I holds (I;J)(l) = I(l).

(38) For all Program-block I, J and for every instruction-location l of

SCMPDS such that l ∈ domJ holds (I;J)(l + card I) = J(l).

(39) For all Program-block I, J holds dom I ⊆ dom(I;J).

(40) For all Program-block I, J holds I ⊆ I;J.

(41) For all Program-block I, J holds I+·(I;J) = I;J.

(42) For all Program-block I, J holds Initialized(I)+·(I;J) = Initialized(I;J).
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3. Combining a Block and a Instruction into One Program Block

Let us consider i, J . The functor i;J yielding a Program-block is defined by:

(Def. 4) i;J = Load(i);J.

Let us consider I, j. The functor I;j yields a Program-block and is defined

by:

(Def. 5) I;j = I;Load(j).

Let us consider i, j. The functor i;j yielding a Program-block is defined as

follows:

(Def. 6) i;j = Load(i);Load(j).

The following propositions are true:

(43) i;j = Load(i);j.

(44) i;j = i;Load(j).

(45) card(I;J) = card I + cardJ.

(46) (I;J);K = I;(J ;K).

(47) (I;J);k = I;(J ;k).

(48) (I;j);K = I;(j;K).

(49) (I;j);k = I;(j;k).

(50) (i;J);K = i;(J ;K).

(51) (i;J);k = i;(J ;k).

(52) (i;j);K = i;(j;K).

(53) (i;j);k = i;(j;k).

(54) dom I ∩ domStart-At(insposn) = ∅.

(55) Start-At(inspos 0) ⊆ Initialized(I).

(56) If I+·Start-At(insposn) ⊆ s, then I ⊆ s.

(57) If Initialized(I) ⊆ s, then I ⊆ s.

(58) (I+·Start-At(insposn))↾the instruction locations of SCMPDS = I.

In the sequel l, l1 denote instructions-locations of SCMPDS.

Next we state four propositions:

(59) a /∈ domStart-At(l).

(60) l1 /∈ domStart-At(l).

(61) a /∈ dom(I+·Start-At(l)).

(62) s+·I+·Start-At(inspos 0) = s+·Start-At(inspos 0)+·I.

Let s be a state of SCMPDS, let l2 be a Int position, and let k be an integer.

Then s +· (l2, k) is a state of SCMPDS.
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4. The Notions of Paraclosed, Parahalting and their Basic

Properties

Let I be a Program-block. The functor stop I yielding a Program-block is

defined as follows:

(Def. 7) stop I = I;SCMPDS− Stop .

Let I be a Program-block and let s be a state of SCMPDS. The functor

IExec(I, s) yielding a state of SCMPDS is defined as follows:

(Def. 8) IExec(I, s) = Result(s+· Initialized(stop I))+·s↾the instruction loca-

tions of SCMPDS.

Let I be a Program-block. We say that I is paraclosed if and only if:

(Def. 9) For every state s of SCMPDS and for every natural number n such that

Initialized(stop I) ⊆ s holds IC(Computation(s))(n) ∈ dom stop I.

We say that I is parahalting if and only if:

(Def. 10) Initialized(stop I) is halting.

Let us note that there exists a Program-block which is parahalting.

One can prove the following proposition

(63) For every parahalting Program-block I such that Initialized(stop I) ⊆ s

holds s is halting.

Let I be a parahalting Program-block. Note that Initialized(stop I) is hal-

ting.

Let l3, l4 be instructions-locations of SCMPDS and let a, b be instructions

of SCMPDS. Then [l3 7−→ a, l4 7−→ b] is a finite partial state of SCMPDS.

One can prove the following propositions:

(64) For every integer k such that k 6= 0 holds goto k 6= haltSCMPDS.

(65) ICs 6= Next(ICs).

(66) s2+·[IC(s2) 7−→ goto 1,Next(IC(s2)) 7−→ goto (−1)] is not halting.

(67) Suppose that

(i) s1 and s2 are equal outside the instruction locations of SCMPDS,

(ii) I ⊆ s1,

(iii) I ⊆ s2, and

(iv) for every m such that m < n holds IC(Computation(s2))(m) ∈ dom I.

Let given m. Suppose m ¬ n. Then (Computation(s1))(m) and

(Computation(s2))(m) are equal outside the instruction locations of

SCMPDS.

(68) For every state s of SCMPDS and for every instruction-location l of

SCMPDS holds l ∈ dom s.

In the sequel l1, l5 are instructions-locations of SCMPDS and i1, i2 are

instructions of SCMPDS.
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The following propositions are true:

(69) s+·[l1 7−→ i1, l5 7−→ i2] = s +· (l1, i1) +· (l5, i2).

(70) Next(insposn) = insposn + 1.

(71) If ICs /∈ dom I, then Next(ICs) /∈ dom I.

Let us mention that every Program-block which is parahalting is also parac-

losed.

We now state several propositions:

(72) domSCMPDS− Stop = {inspos 0}.

(73) inspos 0 ∈ domSCMPDS− Stop and (SCMPDS− Stop)(inspos 0) =

haltSCMPDS.

(74) card SCMPDS− Stop = 1.

(75) inspos 0 ∈ dom stop I.

(76) Let p be a programmed finite partial state of SCMPDS, k be a natural

number, and i3 be an instruction-location of SCMPDS. If i3 ∈ dom p, then

i3 + k ∈ domShift(p, k).

5. Shiftability of Program Blocks and Instructions

Let i be an instruction of SCMPDS and let n be a natural number. We say

that i valid at n if and only if the conditions (Def. 11) are satisfied.

(Def. 11)(i) If InsCode(i) = 0, then there exists k1 such that i = goto k1 and

n + k1 ­ 0,

(ii) if InsCode(i) = 4, then there exist a, k1, k2 such that i = (a, k1) <>

0 gotok2 and n + k2 ­ 0,

(iii) if InsCode(i) = 5, then there exist a, k1, k2 such that i = (a, k1) <=

0 gotok2 and n + k2 ­ 0, and

(iv) if InsCode(i) = 6, then there exist a, k1, k2 such that i = (a, k1) >=

0 gotok2 and n + k2 ­ 0.

One can prove the following proposition

(77) Let i be an instruction of SCMPDS and m, n be natural numbers. If i

valid at m and m ¬ n, then i valid at n.

Let I1 be a finite partial state of SCMPDS. We say that I1 is shiftable if and

only if:

(Def. 12) For all n, i such that insposn ∈ dom I1 and i = I1(insposn) holds

InsCode(i) 6= 1 and InsCode(i) 6= 3 and i valid at n.

Let us mention that there exists a Program-block which is parahalting and

shiftable.

Let i be an instruction of SCMPDS. We say that i is shiftable if and only if:
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(Def. 13) InsCode(i) = 2 or InsCode(i) > 6.

One can check that there exists an instruction of SCMPDS which is shiftable.

Let us consider a, k1. Observe that a:=k1 is shiftable.

Let us consider a, k1, k2. One can check that ak1
:=k2 is shiftable.

Let us consider a, k1, k2. Observe that AddTo(a, k1, k2) is shiftable.

Let us consider a, b, k1, k2. One can check the following observations:

∗ AddTo(a, k1, b, k2) is shiftable,

∗ SubFrom(a, k1, b, k2) is shiftable,

∗ MultBy(a, k1, b, k2) is shiftable,

∗ Divide(a, k1, b, k2) is shiftable, and

∗ (a, k1) := (b, k2) is shiftable.

Let I, J be shiftable Program-block. Observe that I;J is shiftable.

Let i be a shiftable instruction of SCMPDS. Observe that Load(i) is shifta-

ble.

Let i be a shiftable instruction of SCMPDS and let J be a shiftable Program-

block. Observe that i;J is shiftable.

Let I be a shiftable Program-block and let j be a shiftable instruction of

SCMPDS. Observe that I;j is shiftable.

Let i, j be shiftable instructions of SCMPDS. Note that i;j is shiftable.

Let us note that SCMPDS− Stop is parahalting and shiftable.

Let I be a shiftable Program-block. One can verify that stop I is shiftable.

Next we state the proposition

(78) For every shiftable Program-block I and for every integer k1 such that

card I + k1 ­ 0 holds I;goto k1 is shiftable.

Let n be a natural number. Note that Load(goto n) is shiftable.

One can prove the following proposition

(79) Let I be a shiftable Program-block, k1, k2 be integers, and a be a Int

position. If card I + k2 ­ 0, then I;((a, k1) <> 0 gotok2) is shiftable.

Let k1 be an integer, let a be a Int position, and let n be a natural number.

Note that Load((a, k1) <> 0 goton) is shiftable.

Next we state the proposition

(80) Let I be a shiftable Program-block, k1, k2 be integers, and a be a Int

position. If card I + k2 ­ 0, then I;((a, k1) <= 0 gotok2) is shiftable.

Let k1 be an integer, let a be a Int position, and let n be a natural number.

Observe that Load((a, k1) <= 0 goton) is shiftable.

One can prove the following proposition

(81) Let I be a shiftable Program-block, k1, k2 be integers, and a be a Int

position. If card I + k2 ­ 0, then I;((a, k1) >= 0 gotok2) is shiftable.

Let k1 be an integer, let a be a Int position, and let n be a natural number.

Observe that Load((a, k1) >= 0 goton) is shiftable.
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We now state three propositions:

(82) Let s1, s2 be states of SCMPDS, n, m be natural numbers, and k1 be

an integer. If IC(s1) = insposm and m + k1 ­ 0 and IC(s1) + n = IC(s2),

then ICplusConst(s1, k1) + n = ICplusConst(s2, k1).

(83) Let s1, s2 be states of SCMPDS, n, m be natural numbers, and i be

an instruction of SCMPDS. Suppose IC(s1) = insposm and i valid at m

and InsCode(i) 6= 1 and InsCode(i) 6= 3 and IC(s1) + n = IC(s2) and

s1↾Data-LocSCM = s2↾Data-LocSCM. Then ICExec(i,s1) + n = ICExec(i,s2)

and Exec(i, s1)↾Data-LocSCM = Exec(i, s2)↾Data-LocSCM.

(84) Let J be a parahalting shiftable Program-block. Suppose Initialized(stop

J) ⊆ s1. Let n be a natural number. Suppose Shift(stopJ, n) ⊆ s2 and

IC(s2) = insposn and s1↾Data-LocSCM = s2↾Data-LocSCM. Let i be a na-

tural number. Then IC(Computation(s1))(i) + n = IC(Computation(s2))(i) and

CurInstr((Computation(s1))(i)) = CurInstr((Computation(s2))(i)) and

(Computation(s1))(i)↾Data-LocSCM = (Computation(s2))(i)↾Data-LocSCM.
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