
FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999

University of Białystok

A Small Computer Model with Push-Down

Stack1

Jing-Chao Chen

Shanghai Jiaotong University

Summary. The SCMFSA computer can prove the correctness of many
algorithms. Unfortunately, it cannot prove the correctness of recursive algorithms.
For this reason, this article improves the SCMFSA computer and presents a
Small Computer Model with Push-Down Stack (called SCMPDS for short). In
addition to conventional arithmetic and ”goto” instructions, we increase two new
instructions such as ”return” and ”save instruction-counter” in order to be able
to design recursive programs.

MML Identifier: SCMPDS 1.

The articles [15], [21], [8], [13], [22], [5], [6], [20], [12], [16], [2], [17], [1], [3], [14],

[19], [4], [7], [9], [11], [10], and [18] provide the terminology and notation for this

paper.

1. Preliminaries

For simplicity, we follow the rules: x1, x2, x3, x4, x5 are sets, i, j, k are natural

numbers, I, I2, I3, I4 are elements of Z14, i1 is an element of Instr-LocSCM, d1,

d2, d3, d4, d5 are elements of Data-LocSCM, and k1, k2, k3, k4, k5, k6 are integers.

Let x1, x2, x3, x4 be sets. The functor < ∗x1, x2, x3, x4∗ > yields a set and

is defined as follows:

(Def. 1) < ∗x1, x2, x3, x4∗ >= 〈x1, x2, x3〉
a 〈x4〉.

Let x5 be a set. The functor < ∗x1, x2, x3, x4, x5∗ > yielding a set is defined by:

(Def. 2) < ∗x1, x2, x3, x4, x5∗ >= 〈x1, x2, x3〉
a 〈x4, x5〉.

1This work was done while the author visited Shinshu University March–April 1999.

175
c© 1999 University of Białystok

ISSN 1426–2630

176 jing-chao chen

Let x1, x2, x3, x4 be sets. One can verify that < ∗x1, x2, x3, x4∗ > is function-

like and relation-like. Let x5 be a set. One can verify that < ∗x1, x2, x3, x4, x5∗ >

is function-like and relation-like.

Let x1, x2, x3, x4 be sets. One can verify that < ∗x1, x2, x3, x4∗ > is finite

sequence-like. Let x5 be a set. One can check that < ∗x1, x2, x3, x4, x5∗ > is

finite sequence-like.

Let D be a non empty set and let x1, x2, x3, x4 be elements of D. Then

< ∗x1, x2, x3, x4∗ > is a finite sequence of elements of D.

Let D be a non empty set and let x1, x2, x3, x4, x5 be elements of D. Then

< ∗x1, x2, x3, x4, x5∗ > is a finite sequence of elements of D.

One can prove the following propositions:

(1) < ∗x1, x2, x3, x4∗ >= 〈x1, x2, x3〉
a 〈x4〉 and < ∗x1, x2, x3, x4∗ >=

〈x1, x2〉
a 〈x3, x4〉 and < ∗x1, x2, x3, x4∗ >= 〈x1〉

a 〈x2, x3, x4〉 and <

∗x1, x2, x3, x4∗ >= 〈x1〉
a 〈x2〉

a 〈x3〉
a 〈x4〉.

(2) < ∗x1, x2, x3, x4, x5∗ >= 〈x1, x2, x3〉
a〈x4, x5〉 and< ∗x1, x2, x3, x4, x5∗ >

=< ∗x1, x2, x3, x4∗ > a〈x5〉 and < ∗x1, x2, x3, x4, x5∗ >= 〈x1〉
a 〈x2〉

a

〈x3〉
a 〈x4〉

a 〈x5〉 and < ∗x1, x2, x3, x4, x5∗ >= 〈x1, x2〉
a 〈x3, x4, x5〉 and

< ∗x1, x2, x3, x4, x5∗ >= 〈x1〉
a < ∗x2, x3, x4, x5∗ > .

We adopt the following rules: N1 is a non empty set, y1, y2, y3, y4, y5 are

elements of N1, and p is a finite sequence.

We now state several propositions:

(3) p =< ∗x1, x2, x3, x4∗ > iff len p = 4 and p(1) = x1 and p(2) = x2 and

p(3) = x3 and p(4) = x4.

(4) dom < ∗x1, x2, x3, x4∗ >= Seg 4.

(5) p =< ∗x1, x2, x3, x4, x5∗ > iff len p = 5 and p(1) = x1 and p(2) = x2 and

p(3) = x3 and p(4) = x4 and p(5) = x5.

(6) dom < ∗x1, x2, x3, x4, x5∗ >= Seg 5.

(7) π1 < ∗y1, y2, y3, y4∗ >= y1 and π2 < ∗y1, y2, y3, y4∗ >= y2 and π3 <

∗y1, y2, y3, y4∗ >= y3 and π4 < ∗y1, y2, y3, y4∗ >= y4.

(8) π1 < ∗y1, y2, y3, y4, y5∗ >= y1 and π2 < ∗y1, y2, y3, y4, y5∗ >= y2 and

π3 < ∗y1, y2, y3, y4, y5∗ >= y3 and π4 < ∗y1, y2, y3, y4, y5∗ >= y4 and

π5 < ∗y1, y2, y3, y4, y5∗ >= y5.

(9) For every integer k holds k ∈
⋃

{Z} ∪ N.

(10) For every integer k holds k ∈ Data-LocSCM ∪ Z.

(11) For every element d of Data-LocSCM holds d ∈ Data-LocSCM ∪ Z.m

2. The Construction of SCM with Push-Down Stack

The subset SCMPDS− Instr of [: Z14, (
⋃

{Z} ∪ N)∗ :] is defined by the condition

(Def. 3).

a small computer model with push-down stack 177

(Def. 3) SCMPDS− Instr = {〈〈0, 〈l〉〉〉 : l ranges over integers} ∪ {〈〈1, 〈s1〉〉〉 : s1

ranges over elements of Data-LocSCM} ∪ {〈〈I, 〈v, c〉〉〉; I ranges over ele-

ments of Z14, v ranges over elements of Data-LocSCM, c ranges over inte-

gers: I ∈ {2, 3}} ∪ {〈〈I, 〈v, c1, c2〉〉〉; I ranges over elements of Z14, v ranges

over elements of Data-LocSCM, c1 ranges over integers, c2 ranges over

integers: I ∈ {4, 5, 6, 7, 8}} ∪ {〈〈I, < ∗v1, v2, c1, c2∗ > 〉〉; I ranges over ele-

ments of Z14, v1 ranges over elements of Data-LocSCM, v2 ranges over

elements of Data-LocSCM, c1 ranges over integers, c2 ranges over integers:

I ∈ {9, 10, 11, 12, 13}}.

We now state two propositions:

(12) SCMPDS− Instr = {〈〈0, 〈k1〉〉〉} ∪ {〈〈1, 〈d1〉〉〉} ∪ {〈〈I2, 〈d2, k2〉〉〉 : I2 ∈

{2, 3}} ∪ {〈〈I3, 〈d3, k3, k4〉〉〉 : I3 ∈ {4, 5, 6, 7, 8}} ∪ {〈〈I4, < ∗d4, d5, k5, k6∗ >

〉〉 : I4 ∈ {9, 10, 11, 12, 13}}.

(13) 〈〈0, 〈0〉〉〉 ∈ SCMPDS− Instr .

One can verify that SCMPDS− Instr is non empty.

We now state three propositions:

(14) k = 0 or there exists j such that k = 2 · j + 1 or there exists j such that

k = 2 · j + 2.

(15) If k = 0, then it is not true that there exists j such that k = 2 · j + 1

and it is not true that there exists j such that k = 2 · j + 2.

(16)(i) If there exists j such that k = 2 · j + 1, then k 6= 0 and it is not true

that there exists j such that k = 2 · j + 2, and

(ii) if there exists j such that k = 2 · j + 2, then k 6= 0 and it is not true

that there exists j such that k = 2 · j + 1.

The function SCMPDS−OK from N into {Z}∪{SCMPDS− Instr, Instr-LocSCM}

is defined as follows:

(Def. 4) (SCMPDS−OK)(0) = Instr-LocSCM and for every natural number k

holds (SCMPDS−OK)(2 · k + 1) = Z and (SCMPDS−OK)(2 · k + 2) =

SCMPDS− Instr .

A SCMPDS-State is an element of
∏

SCMPDS−OK .

Next we state several propositions:

(17) Instr-LocSCM 6= SCMPDS− Instr and SCMPDS− Instr 6= Z.

(18) (SCMPDS−OK)(i) = Instr-LocSCM iff i = 0.

(19) (SCMPDS−OK)(i) = Z iff there exists k such that i = 2 · k + 1.

(20) (SCMPDS−OK)(i) = SCMPDS− Instr iff there exists k such that i =

2 · k + 2.

(21) (SCMPDS−OK)(d1) = Z.

(22) (SCMPDS−OK)(i1) = SCMPDS− Instr .

(23) π0

∏

SCMPDS−OK = Instr-LocSCM.

178 jing-chao chen

(24) πd1

∏

SCMPDS−OK = Z.

(25) πi1

∏

SCMPDS−OK = SCMPDS− Instr .

Let s be a SCMPDS-State. The functor ICs yielding an element of

Instr-LocSCM is defined as follows:

(Def. 5) ICs = s(0).

Let s be a SCMPDS-State and let u be an element of Instr-LocSCM. The

functor ChgSCM(s, u) yielding a SCMPDS-State is defined as follows:

(Def. 6) ChgSCM(s, u) = s+·(0 7−→. u).

We now state three propositions:

(26) For every SCMPDS-State s and for every element u of Instr-LocSCM
holds (ChgSCM(s, u))(0) = u.

(27) For every SCMPDS-State s and for every element u of Instr-LocSCM and

for every element m1 of Data-LocSCM holds (ChgSCM(s, u))(m1) = s(m1).

(28) For every SCMPDS-State s and for all elements u, v of Instr-LocSCM
holds (ChgSCM(s, u))(v) = s(v).

Let s be a SCMPDS-State, let t be an element of Data-LocSCM, and let u be

an integer. The functor ChgSCM(s, t, u) yields a SCMPDS-State and is defined

as follows:

(Def. 7) ChgSCM(s, t, u) = s+·(t 7−→. u).

The following propositions are true:

(29) For every SCMPDS-State s and for every element t of Data-LocSCM and

for every integer u holds (ChgSCM(s, t, u))(0) = s(0).

(30) For every SCMPDS-State s and for every element t of Data-LocSCM and

for every integer u holds (ChgSCM(s, t, u))(t) = u.

(31) Let s be a SCMPDS-State, t be an element of Data-LocSCM, u be

an integer, and m1 be an element of Data-LocSCM. If m1 6= t, then

(ChgSCM(s, t, u))(m1) = s(m1).

(32) Let s be a SCMPDS-State, t be an element of Data-LocSCM, u be an

integer, and v be an element of Instr-LocSCM. Then (ChgSCM(s, t, u))(v) =

s(v).

Let s be a SCMPDS-State and let a be an element of Data-LocSCM. Then

s(a) is an integer.

Let s be a SCMPDS-State, let a be an element of Data-LocSCM, and let n be

an integer. The functor Address Add(s, a, n) yields an element of Data-LocSCM
and is defined by:

(Def. 8) Address Add(s, a, n) = 2 · |s(a) + n|+ 1.

Let s be a SCMPDS-State and let n be an integer. The functor

jump address(s, n) yielding an element of Instr-LocSCM is defined as follows:

(Def. 9) jump address(s, n) = |((ICs qua natural number)−2) + 2 · n|+ 2.

a small computer model with push-down stack 179

Let d be an element of Data-LocSCM and let s be an integer. Then 〈d, s〉 is

a finite sequence of elements of Data-LocSCM ∪ Z.

Let x be an element of SCMPDS− Instr. Let us assume that there exist

an element m1 of Data-LocSCM and I such that x = 〈〈I, 〈m1〉〉〉. The functor

x address1 yielding an element of Data-LocSCM is defined as follows:

(Def. 10) There exists a finite sequence f of elements of Data-LocSCM such that

f = x2 and x address1 = π1f.

The following proposition is true

(33) For every element x of SCMPDS− Instr and for every element m1 of

Data-LocSCM such that x = 〈〈I, 〈m1〉〉〉 holds x address1 = m1.

Let x be an element of SCMPDS− Instr. Let us assume that there exist

an integer r and I such that x = 〈〈I, 〈r〉〉〉. The functor x const INT yielding an

integer is defined by:

(Def. 11) There exists a finite sequence f of elements of Z such that f = x2 and

x const INT = π1f.

The following proposition is true

(34) For every element x of SCMPDS− Instr and for every integer k such

that x = 〈〈I, 〈k〉〉〉 holds x const INT = k.

Let x be an element of SCMPDS− Instr. Let us assume that there exist an

element m1 of Data-LocSCM, an integer r, and I such that x = 〈〈I, 〈m1, r〉〉〉. The

functor xP21address yielding an element of Data-LocSCM is defined as follows:

(Def. 12) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP21address = π1f.

The functor xP22const yielding an integer is defined as follows:

(Def. 13) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP22const = π2f.

The following proposition is true

(35) Let x be an element of SCMPDS− Instr, m1 be an element

of Data-LocSCM, and r be an integer. If x = 〈〈I, 〈m1, r〉〉〉, then

xP21address = m1 and xP22const = r.

Let x be an element of SCMPDS− Instr. Let us assume that there exist an

element m2 of Data-LocSCM, integers k1, k2, and I such that x = 〈〈I, 〈m2, k1,

k2〉〉〉. The functor xP31address yielding an element of Data-LocSCM is defined

as follows:

(Def. 14) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP31address = π1f.

The functor xP32const yielding an integer is defined as follows:

(Def. 15) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP32const = π2f.

180 jing-chao chen

The functor xP33const yields an integer and is defined by:

(Def. 16) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP33const = π3f.

We now state the proposition

(36) Let x be an element of SCMPDS− Instr, d1 be an element of

Data-LocSCM, and k1, k2 be integers. If x = 〈〈I, 〈d1, k1, k2〉〉〉, then

xP31address = d1 and xP32const = k1 and xP33const = k2.

Let x be an element of SCMPDS− Instr. Let us assume that there exist

elements m2, m3 of Data-LocSCM, integers k1, k2, and I such that x =

〈〈I, < ∗m2,m3, k1, k2∗ > 〉〉. The functor xP41address yields an element of

Data-LocSCM and is defined by:

(Def. 17) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP41address = π1f.

The functor xP42address yields an element of Data-LocSCM and is defined as

follows:

(Def. 18) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP42address = π2f.

The functor xP43const yielding an integer is defined as follows:

(Def. 19) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP43const = π3f.

The functor xP44const yielding an integer is defined as follows:

(Def. 20) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such

that f = x2 and xP44const = π4f.

We now state the proposition

(37) Let x be an element of SCMPDS− Instr, d1, d2 be elements of

Data-LocSCM, and k1, k2 be integers. If x = 〈〈I, < ∗d1, d2, k1, k2∗ > 〉〉,

then xP41address = d1 and xP42address = d2 and xP43const = k1 and

xP44const = k2.

Let s be a SCMPDS-State and let a be an element of Data-LocSCM. The

functor PopInstrLoc(s, a) yielding an element of Instr-LocSCM is defined as fol-

lows:

(Def. 21) PopInstrLoc(s, a) = 2 · (|s(a)| ÷ 2) + 4.

The natural number RetSP is defined as follows:

(Def. 22) RetSP = 0.

The natural number RetIC is defined as follows:

(Def. 23) RetIC = 1.

Let x be an element of SCMPDS− Instr and let s be a SCMPDS-State. The

functor Exec-ResSCM(x, s) yielding a SCMPDS-State is defined as follows:

a small computer model with push-down stack 181

(Def. 24) Exec-ResSCM(x, s) =










































































































































































































































































































ChgSCM(s, jump address(s, x const INT)), if there exists k1 such that

x = 〈〈0, 〈k1〉〉〉,

ChgSCM(ChgSCM(s, xP21address, xP22const),Next(ICs)), if there exist

d1, k1 such that x = 〈〈2, 〈d1, k1〉〉〉,

ChgSCM(ChgSCM(s,Address Add(s, xP21address, xP22const), (ICs qua natural

number)),Next(ICs)), if there exist d1, k1 such that x = 〈〈3, 〈d1, k1〉〉〉,

ChgSCM(ChgSCM(s, x address1, s(Address Add(s, x address1,RetSP))),PopInstrLoc

(s,Address Add(s, x address1,RetIC))), if there exists d1 such that x = 〈〈1, 〈d1〉〉〉,

ChgSCM(s, (s(Address Add(s, xP31address, xP32const)) = 0→ Next(ICs), jump

address(s, xP33const))), if there exist d1, k1, k2 such that x = 〈〈4, 〈d1, k1, k2〉〉〉,

ChgSCM(s, (s(Address Add(s, xP31address, xP32const)) > 0→ Next(ICs), jump

address(s, xP33const))), if there exist d1, k1, k2 such that x = 〈〈5, 〈d1, k1, k2〉〉〉,

ChgSCM(s, (0 > s(Address Add(s, xP31address, xP32const))→ Next(ICs), jump

address(s, xP33const))), if there exist d1, k1, k2 such that x = 〈〈6, 〈d1, k1, k2〉〉〉,

ChgSCM(ChgSCM(s,Address Add(s, xP31address, xP32const), xP33const),

Next(ICs)), if there exist d1, k1, k2 such that x = 〈〈7, 〈d1, k1, k2〉〉〉,

ChgSCM(ChgSCM(s,Address Add(s, xP31address, xP32const),

s(Address Add(s, xP31address, xP32const)) + xP33const),Next(ICs)),

if there exist d1, k1, k2 such that x = 〈〈8, 〈d1, k1, k2〉〉〉,

ChgSCM(ChgSCM(s,Address Add(s, xP41address, xP43const), s(Address Add

(s, xP41address, xP43const)) + s(Address Add(s, xP42address, xP44const))),

Next(ICs)), if there exist d1, d2, k1, k2 such that x = 〈〈9, < ∗d1, d2, k1, k2∗ > 〉〉,

ChgSCM(ChgSCM(s,Address Add(s, xP41address, xP43const), s(Address Add

(s, xP41address, xP43const))− s(Address Add(s, xP42address, xP44const))),

Next(ICs)), if there exist d1, d2, k1, k2 such that x = 〈〈10, < ∗d1, d2, k1, k2∗ > 〉〉,

ChgSCM(ChgSCM(s,Address Add(s, xP41address, xP43const), s(Address Add

(s, xP41address, xP43const)) · s(Address Add(s, xP42address, xP44const))),

Next(ICs)), if there exist d1, d2, k1, k2 such that x = 〈〈11, < ∗d1, d2, k1, k2∗ > 〉〉,

ChgSCM(ChgSCM(s,Address Add(s, xP41address, xP43const),

s(Address Add(s, xP42address, xP44const))),Next(ICs)), if there exist d1, d2,

k1, k2 such that x = 〈〈13, < ∗d1, d2, k1, k2∗ > 〉〉,

ChgSCM(ChgSCM(ChgSCM(s,Address Add(s, xP41address, xP43const),

s(Address Add(s, xP41address, xP43const))÷ s(Address Add(s, xP42address,

xP44const))),Address Add(s, xP42address, xP44const), s(Address Add(s,

xP41address, xP43const))mod s(Address Add(s, xP42address, xP44const))),

Next(ICs)), if there exist d1, d2, k1, k2 such that x = 〈〈12, < ∗d1, d2, k1, k2∗ > 〉〉,

s, otherwise.

Let f be a function from SCMPDS− Instr into

(
∏

SCMPDS−OK)
∏
SCMPDS−OK and let x be an element of SCMPDS− Instr.

Note that f(x) is function-like and relation-like.

The function SCMPDS− Exec from SCMPDS− Instr into

182 jing-chao chen

(
∏

SCMPDS−OK)
∏
SCMPDS−OK is defined by:

(Def. 25) For every element x of SCMPDS− Instr and for every SCMPDS-State

y holds (SCMPDS− Exec)(x)(y) = Exec-ResSCM(x, y).

Acknowledgments

We wish to thank Prof. Y. Nakamura for many helpful suggestions.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[4] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,
1990.

[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[7] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[9] Czesław Byliński. Subcategories and products of categories. Formalized Mathematics,
1(4):725–732, 1990.

[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[11] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[12] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathe-
matics, 2(5):623–627, 1991.

[13] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[14] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,
1(3):495–500, 1990.

[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97–105, 1990.

[17] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[19] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received June 15, 1999

