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Summary. First, notions of inside components and outside components
are introduced for any subset of n-dimensional Euclid space. Next, notions of
the bounded domain and the unbounded domain are defined using the above
components. If the dimension is larger than 1, and if a subset is bounded, a
unbounded domain of the subset coincides with an outside component (which is
unique) of the subset. For a sphare in n-dimensional space, the similar fact is
true for a bounded domain. In 2 dimensional space, any rectangle also has such
property. We discussed relations between the Jordan property and the concept
of boundary, which are necessary to find points in domains near a curve. In the
last part, we gave the sufficient criterion for belonging to the left component of
some clockwise oriented finite sequences.
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The articles [44], [51], [12], [50], [53], [9], [10], [7], [22], [2], [1], [40], [54], [16],

[27], [15], [24], [5], [38], [39], [20], [35], [32], [18], [42], [3], [8], [49], [46], [41], [21],

[4], [26], [34], [37], [43], [6], [30], [52], [11], [25], [13], [17], [33], [14], [48], [47],

[19], [23], [28], [29], [36], [45], and [31] provide the notation and terminology for

this paper.

1. Definitions of Bounded Domain and Unbounded Domain

We follow the rules: m, n are natural numbers, r, s are real numbers, and

x, y are sets.

The following propositions are true:
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(1) If r ¬ 0, then |r| = −r.

(2) For all n, m such that n ¬ m and m ¬ n + 2 holds m = n or m = n + 1

or m = n + 2.

(3) For all n, m such that n ¬ m and m ¬ n + 3 holds m = n or m = n + 1

or m = n + 2 or m = n + 3.

(4) For all n, m such that n ¬ m and m ¬ n + 4 holds m = n or m = n + 1

or m = n + 2 or m = n + 3 or m = n + 4.

(5) For all real numbers a, b such that a ­ 0 and b ­ 0 holds a + b ­ 0.

(6) For all real numbers a, b such that a > 0 and b ­ 0 or a ­ 0 and b > 0

holds a + b > 0.

(7) For every finite sequence f such that rng f = {x, y} and len f = 2 holds

f(1) = x and f(2) = y or f(1) = y and f(2) = x.

(8) Let f be an increasing finite sequence of elements of R. If rng f = {r, s}
and len f = 2 and r ¬ s, then f(1) = r and f(2) = s.

In the sequel p, p1, p2, p3, q, q1, q2 denote points of En
T.

We now state several propositions:

(9) (p1 + p2)− p3 = (p1 − p3) + p2.

(10) ||q|| = |q|.
(11) ||q1| − |q2|| ¬ |q1 − q2|.
(12) ||[r]|| = |r|.
(13) q − 0En

T
= q and 0En

T
− q = −q.

Let us consider n and let P be a subset of En
T. We say that P is n-convex if

and only if:

(Def. 1) For all points w1, w2 of En
T such that w1 ∈ P and w2 ∈ P holds

L(w1, w2) ⊆ P.

The following propositions are true:

(14) For every non empty subset P of En
T such that P is n-convex holds P is

connected.

(15) Let G be a non empty topological space, P be a subset of G, A be a

subset of the carrier of G, and Q be a subset of G↾A. If P 6= ∅ and P = Q

and P is connected, then Q is connected.

Let us consider n and let A be a subset of En
T. We say that A is Bounded if

and only if:

(Def. 2) There exists a subset C of the carrier of En such that C = A and C is

bounded.

One can prove the following proposition

(16) For all subsets A, B of En
T such that B is Bounded and A ⊆ B holds A

is Bounded.
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Let us consider n, let A be a subset of the carrier of En
T, and let B be a

subset of En
T. We say that B is inside component of A if and only if:

(Def. 3) B is a component of Ac and Bounded.

Next we state the proposition

(17) Let A be a subset of the carrier of En
T and B be a subset of En

T. Then B

is inside component of A if and only if there exists a subset C of (En
T)↾A

c

such that C = B and C is a component of (En
T)↾A

c and for every subset

D of the carrier of En such that D = C holds D is bounded.

Let us consider n, let A be a subset of the carrier of En
T, and let B be a

subset of En
T. We say that B is outside component of A if and only if:

(Def. 4) B is a component of Ac and B is not Bounded.

Next we state three propositions:

(18) Let A be a subset of the carrier of En
T and B be a subset of En

T. Then B

is outside component of A if and only if there exists a subset C of (En
T)↾A

c

such that C = B and C is a component of (En
T)↾A

c and it is not true

that for every subset D of the carrier of En such that D = C holds D is

bounded.

(19) For all subsets A, B of En
T such that B is inside component of A holds

B ⊆ Ac.

(20) For all subsets A, B of En
T such that B is outside component of A holds

B ⊆ Ac.

Let us consider n and let A be a subset of the carrier of En
T. The functor

BDDA yields a subset of En
T and is defined by:

(Def. 5) BDDA =
⋃{B; B ranges over subsets of En

T: B is inside component of

A}.
Let us consider n and let A be a subset of the carrier of En

T. The functor

UBDA yielding a subset of En
T is defined by:

(Def. 6) UBDA =
⋃{B; B ranges over subsets of En

T: B is outside component of

A}.
One can prove the following propositions:

(21) ΩEn

T
is n-convex.

(22) ΩEn

T
is connected.

Let us consider n. One can check that ΩEn

T
is connected.

We now state several propositions:

(23) ΩEn

T
is a component of En

T.

(24) For every subset A of the carrier of En
T holds BDDA is a union of com-

ponents of (En
T)↾A

c.

(25) For every subset A of the carrier of En
T holds UBDA is a union of com-

ponents of (En
T)↾A

c.
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(26) Let A be a subset of the carrier of En
T and B be a subset of En

T. If B is

inside component of A, then B ⊆ BDDA.

(27) Let A be a subset of the carrier of En
T and B be a subset of En

T. If B is

outside component of A, then B ⊆ UBDA.

(28) For every subset A of the carrier of En
T holds BDDA ∩UBDA = ∅.

(29) For every subset A of the carrier of En
T holds BDDA ⊆ Ac.

(30) For every subset A of the carrier of En
T holds UBDA ⊆ Ac.

(31) For every subset A of the carrier of En
T holds BDDA ∪UBDA = Ac.

In the sequel u is a point of En.

One can prove the following propositions:

(32) Let G be a non empty topological space, w1, w2, w3 be points of G,

h1 be a map from I into G, and h2 be a map from I into G. Suppose

h1 is continuous and w1 = h1(0) and w2 = h1(1) and h2 is continuous

and w2 = h2(0) and w3 = h2(1). Then there exists a map h3 from I

into G such that h3 is continuous and w1 = h3(0) and w3 = h3(1) and

rng h3 ⊆ rng h1 ∪ rng h2.

(33) For every subset P of En
T such that P = Rn holds P is connected.

Let us consider n. The functor 1 ∗n yielding a finite sequence of elements of
R is defined by:

(Def. 7) 1 ∗ n = n 7→ (1 qua real number).

Let us consider n. Then 1 ∗ n is an element of Rn.

Let us consider n. The functor 1.REALn yielding a point of En
T is defined

by:

(Def. 8) 1.REALn = 1 ∗ n.

One can prove the following propositions:

(34) |1 ∗ n| = n 7→ (1 qua real number).

(35) |1 ∗ n| = √n.

(36) 1.REAL 1 = 〈(1 qua real number)〉.
(37) | 1.REALn| = √n.

(38) If 1 ¬ n, then 1 ¬ | 1.REALn|.
(39) For every subset W of the carrier of En such that n ­ 1 and W = Rn

holds W is not bounded.

(40) Let A be a subset of En
T. Then A is Bounded if and only if there exists

a real number r such that for every point q of En
T such that q ∈ A holds

|q| < r.

(41) If n ­ 1, then ΩEn

T
is not Bounded.

(42) If n ­ 1, then UBD ∅En

T
= Rn.
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(43) Let w1, w2, w3 be points of En
T, P be a non empty subset of the carrier

of En
T, and h1, h2 be maps from I into (En

T)↾P. Suppose h1 is continuous

and w1 = h1(0) and w2 = h1(1) and h2 is continuous and w2 = h2(0) and

w3 = h2(1). Then there exists a map h3 from I into (En
T)↾P such that h3

is continuous and w1 = h3(0) and w3 = h3(1).

(44) Let P be a subset of the carrier of En
T and w1, w2, w3 be points of

En
T. Suppose w1 ∈ P and w2 ∈ P and w3 ∈ P and L(w1, w2) ⊆ P and

L(w2, w3) ⊆ P. Then there exists a map h from I into (En
T)↾P such that h

is continuous and w1 = h(0) and w3 = h(1).

(45) Let P be a subset of the carrier of En
T and w1, w2, w3, w4 be points of En

T.

Suppose w1 ∈ P and w2 ∈ P and w3 ∈ P and w4 ∈ P and L(w1, w2) ⊆ P

and L(w2, w3) ⊆ P and L(w3, w4) ⊆ P. Then there exists a map h from I

into (En
T)↾P such that h is continuous and w1 = h(0) and w4 = h(1).

(46) Let P be a subset of the carrier of En
T and w1, w2, w3, w4, w5, w6,

w7 be points of En
T. Suppose w1 ∈ P and w2 ∈ P and w3 ∈ P and

w4 ∈ P and w5 ∈ P and w6 ∈ P and w7 ∈ P and L(w1, w2) ⊆ P and

L(w2, w3) ⊆ P and L(w3, w4) ⊆ P and L(w4, w5) ⊆ P and L(w5, w6) ⊆ P

and L(w6, w7) ⊆ P. Then there exists a map h from I into (En
T)↾P such

that h is continuous and w1 = h(0) and w7 = h(1).

(47) For all points w1, w2 of En
T such that it is not true that there exists a

real number r such that w1 = r ·w2 or w2 = r ·w1 holds 0En

T
/∈ L(w1, w2).

(48) Let w1, w2 be points of En
T and P be a subset of (En)top. Suppose P =

L(w1, w2) and 0En

T
/∈ L(w1, w2). Then there exists a point w0 of En

T such

that w0 ∈ L(w1, w2) and |w0| > 0 and |w0| = (distmin(P ))(0En

T
).

(49) Let a be a real number, Q be a subset of the carrier of En
T, and w1, w4

be points of En
T. Suppose Q = {q : |q| > a} and w1 ∈ Q and w4 ∈ Q and

it is not true that there exists a real number r such that w1 = r · w4 or

w4 = r · w1. Then there exist points w2, w3 of En
T such that w2 ∈ Q and

w3 ∈ Q and L(w1, w2) ⊆ Q and L(w2, w3) ⊆ Q and L(w3, w4) ⊆ Q.

(50) Let a be a real number, Q be a subset of the carrier of En
T, and w1, w4

be points of En
T. Suppose Q = Rn \ {q : |q| < a} and w1 ∈ Q and w4 ∈ Q

and it is not true that there exists a real number r such that w1 = r · w4

or w4 = r ·w1. Then there exist points w2, w3 of En
T such that w2 ∈ Q and

w3 ∈ Q and L(w1, w2) ⊆ Q and L(w2, w3) ⊆ Q and L(w3, w4) ⊆ Q.

(51) Let x be an element of Rn. Then x is a finite sequence of elements of R

and for every finite sequence f such that f = x holds len f = n.

(52) Every finite sequence f of elements of R is an element of Rlen f and a

point of E len f
T .

(53) Let x be an element of Rn, f , g be finite sequences of elements of R, and

r be a real number. Suppose f = x and g = r ·x. Then len f = len g and for
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every natural number i such that 1 ¬ i and i ¬ len f holds πig = r · πif.

(54) Let x be an element of Rn and f be a finite sequence. Suppose x 6=
〈0, . . . , 0︸ ︷︷ ︸

n

〉 and x = f. Then there exists a natural number i such that 1 ¬ i

and i ¬ n and f(i) 6= 0.

(55) Let x be an element of Rn. Suppose n ­ 2 and x 6= 〈0, . . . , 0︸ ︷︷ ︸
n

〉. Then it

is not true that there exists an element y of Rn and there exists a real

number r such that y = r · x or x = r · y.

(56) Let a be a real number, Q be a subset of the carrier of En
T, and w1, w7 be

points of En
T. Suppose n ­ 2 and Q = {q : |q| > a} and w1 ∈ Q and w7 ∈ Q

and there exists a real number r such that w1 = r · w7 or w7 = r · w1.

Then there exist points w2, w3, w4, w5, w6 of En
T such that w2 ∈ Q and

w3 ∈ Q and w4 ∈ Q and w5 ∈ Q and w6 ∈ Q and L(w1, w2) ⊆ Q and

L(w2, w3) ⊆ Q and L(w3, w4) ⊆ Q and L(w4, w5) ⊆ Q and L(w5, w6) ⊆ Q

and L(w6, w7) ⊆ Q.

(57) Let a be a real number, Q be a subset of the carrier of En
T, and w1, w7 be

points of En
T. Suppose n ­ 2 and Q = Rn \ {q : |q| < a} and w1 ∈ Q and

w7 ∈ Q and there exists a real number r such that w1 = r·w7 or w7 = r·w1.

Then there exist points w2, w3, w4, w5, w6 of En
T such that w2 ∈ Q and

w3 ∈ Q and w4 ∈ Q and w5 ∈ Q and w6 ∈ Q and L(w1, w2) ⊆ Q and

L(w2, w3) ⊆ Q and L(w3, w4) ⊆ Q and L(w4, w5) ⊆ Q and L(w5, w6) ⊆ Q

and L(w6, w7) ⊆ Q.

(58) For every real number a such that n ­ 1 holds {q : |q| > a} 6= ∅.
(59) For every real number a and for every subset P of En

T such that n ­ 2

and P = {q : |q| > a} holds P is connected.

(60) For every real number a such that n ­ 1 holds Rn \ {q : |q| < a} 6= ∅.
(61) For every real number a and for every subset P of En

T such that n ­ 2

and P = Rn \ {q : |q| < a} holds P is connected.

(62) Let a be a real number, n be a natural number, and P be a subset of

En
T. If n ­ 1 and P = Rn \ {q; q ranges over points of En

T: |q| < a}, then P

is not Bounded.

(63) Let a be a real number and P be a subset of E1

T. Suppose P = {q; q
ranges over points of E1

T:
∨

r (q = 〈r〉 ∧ r > a)}. Then P is n-convex.

(64) Let a be a real number and P be a subset of E1

T. Suppose P = {q; q
ranges over points of E1

T:
∨

r (q = 〈r〉 ∧ r < −a)}. Then P is n-convex.

(65) Let a be a real number and P be a subset of E1

T. Suppose P = {q; q
ranges over points of E1

T:
∨

r (q = 〈r〉 ∧ r > a)}. Then P is connected.

(66) Let a be a real number and P be a subset of E1

T. Suppose P = {q; q
ranges over points of E1

T:
∨

r (q = 〈r〉 ∧ r < −a)}. Then P is connected.
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(67) Let W be a subset of the carrier of E1, a be a real number, and P be

a subset of E1

T. Suppose W = {q; q ranges over points of E1

T:
∨

r (q =

〈r〉 ∧ r > a)} and P = W. Then P is connected and W is not bounded.

(68) Let W be a subset of the carrier of E1, a be a real number, and P be

a subset of E1

T. Suppose W = {q; q ranges over points of E1

T:
∨

r (q =

〈r〉 ∧ r < −a)} and P = W. Then P is connected and W is not bounded.

(69) Let W be a subset of the carrier of En, a be a real number, and P be

a subset of En
T. If n ­ 2 and W = {q : |q| > a} and P = W, then P is

connected and W is not bounded.

(70) Let W be a subset of the carrier of En, a be a real number, and P be a

subset of En
T. If n ­ 2 and W = Rn \ {q : |q| < a} and P = W, then P is

connected and W is not bounded.

(71) Let P , P1 be subsets of En
T, Q be a subset of the carrier of En

T, and W

be a subset of the carrier of En. Suppose P = W and P is connected and

W is not bounded and P1 = Component(Down(P, Qc)) and W ∩ Q = ∅.
Then P1 is outside component of Q.

Let S be a 1-sorted structure and let A be a subset of the carrier of S. The

functor RACA yields a subset of S and is defined as follows:

(Def. 9) RACA = A.

The following propositions are true:

(72) Let A be a subset of the carrier of En, B be a non empty subset of the

carrier of En, and C be a subset of the carrier of En↾B. If A ⊆ B and

A = C and C is bounded, then A is bounded.

(73) For every subset A of En
T such that A is compact holds A is Bounded.

(74) For every subset A of En
T such that 1 ¬ n and A is Bounded holds Ac 6= ∅.

(75) Let r be a real number. Then

(i) there exists a subset B of the carrier of En such that B = {q : |q| < r},
and

(ii) for every subset A of the carrier of En such that A = {q1 : |q1| < r}
holds A is bounded.

(76) Let A be a subset of En
T. Suppose n ­ 2 and A is Bounded. Then there

exists a subset B of En
T such that B is outside component of A and B =

UBDA.

(77) For every real number a and for every subset P of En
T such that P = {q :

|q| < a} holds P is n-convex.

(78) For every real number a and for every subset P of En
T such that P =

Ball(u, a) holds P is n-convex.

(79) For every real number a and for every subset P of En
T such that a > 0

and P = {q : |q| < a} holds P is connected.
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In the sequel R denotes a subset of En
T, P denotes a subset of the carrier of

En
T, and f denotes a finite sequence of elements of En

T.

Next we state a number of propositions:

(80) Suppose p 6= q and p ∈ Ball(u, r) and q ∈ Ball(u, r). Then there exists a

map h from I into En
T such that h is continuous and h(0) = p and h(1) = q

and rng h ⊆ Ball(u, r).

(81) Let f be a map from I into En
T. Suppose f is continuous and f(0) = p1

and f(1) = p2 and p ∈ Ball(u, r) and p2 ∈ Ball(u, r). Then there exists a

map h from I into En
T such that h is continuous and h(0) = p1 and h(1) = p

and rng h ⊆ rng f ∪ Ball(u, r).

(82) Let f be a map from I into En
T. Suppose p 6= p1 and f is continuous

and rng f ⊆ P and f(0) = p1 and f(1) = p2 and p ∈ Ball(u, r) and

p2 ∈ Ball(u, r) and Ball(u, r) ⊆ P. Then there exists a map f1 from I

into En
T such that f1 is continuous and rng f1 ⊆ P and f1(0) = p1 and

f1(1) = p.

(83) Let given p and P be a subset of En
T. Suppose that

(i) R is connected and open, and

(ii) P = {q : q 6= p ∧ q ∈ R ∧ ¬∨
f :map from I into En

T

(f is

continuous ∧ rng f ⊆ R ∧ f(0) = p ∧ f(1) = q)}.
Then P is open.

(84) Let P be a subset of En
T. Suppose that

(i) R is connected and open,

(ii) p ∈ R, and

(iii) P = {q : q = p ∨ ∨
f :map from I into En

T

(f is continuous ∧ rng f ⊆
R ∧ f(0) = p ∧ f(1) = q)}.
Then P is open.

(85) Let R be a subset of the carrier of En
T. Suppose p ∈ R and P = {q :

q = p ∨ ∨
f :map from I into En

T

(f is continuous ∧ rng f ⊆ R ∧ f(0) =

p ∧ f(1) = q)}. Then P ⊆ R.

(86) Let R be a subset of En
T and p be a point of En

T. Suppose that

(i) R is connected and open,

(ii) p ∈ R, and

(iii) P = {q : q = p ∨ ∨
f :map from I into En

T

(f is continuous ∧ rng f ⊆
R ∧ f(0) = p ∧ f(1) = q)}.
Then R ⊆ P.

(87) Let R be a subset of En
T and p, q be points of En

T. Suppose R is connected

and open and p ∈ R and q ∈ R and p 6= q. Then there exists a map f

from I into En
T such that f is continuous and rng f ⊆ R and f(0) = p and

f(1) = q.
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(88) For every subset A of En
T and for every real number a such that A = {q :

|q| = a} holds −A is open and A is closed.

(89) For every non empty subset B of En
T such that B is open holds (En

T)↾B

is locally connected.

(90) Let B be a non empty subset of the carrier of En
T, A be a subset of the

carrier of En
T, and a be a real number. If A = {q : |q| = a} and Ac = B,

then (En
T)↾B is locally connected.

(91) For every map f from En
T into R

1 such that for every q holds f(q) = |q|
holds f is continuous.

(92) There exists a map f from En
T into R

1 such that for every q holds f(q) =

|q| and f is continuous.

Let X, Y be non empty 1-sorted structures, let f be a map from X into

Y , and let x be a set. Let us assume that x is a point of X. The functor πxf

yielding a point of Y is defined as follows:

(Def. 10) πxf = f(x).

We now state four propositions:

(93) Let g be a map from I into En
T. Suppose g is continuous. Then there exists

a map f from I into R
1 such that for every point t of I holds f(t) = |g(t)|

and f is continuous.

(94) Let g be a map from I into En
T and a be a real number. Suppose g is

continuous and |π0g| ¬ a and a ¬ |π1g|. Then there exists a point s of I

such that |πsg| = a.

(95) If q = 〈r〉, then |q| = |r|.
(96) Let A be a subset of the carrier of En

T and a be a real number. Suppose

n ­ 1 and a > 0 and A = {q : |q| = a}. Then there exists a subset B of

En
T such that B is inside component of A and B = BDDA.

2. Bounded and Unbounded Domains of Rectangles

In the sequel D is a non vertical non horizontal non empty compact subset

of E2

T.

Next we state several propositions:

(97) len the Go-board of SpStSeqD = 2 and width the Go-board of

SpStSeqD = 2 and π1 SpStSeqD = (the Go-board of SpStSeqD)1,2

and π2 SpStSeqD = (the Go-board of SpStSeqD)2,2 and π3 SpStSeqD =

(the Go-board of SpStSeqD)2,1 and π4 SpStSeqD = (the Go-board of

SpStSeqD)1,1 and π5 SpStSeqD = (the Go-board of SpStSeqD)1,2.

(98) LeftComp(SpStSeqD) is not Bounded.
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(99) LeftComp(SpStSeqD) ⊆ UBD L̃(SpStSeqD).

(100) Let G be a topological space and A, B, C be subsets of G. Suppose A

is a component of G and B is a component of G and C is connected and

A ∩ C 6= ∅ and B ∩ C 6= ∅. Then A = B.

(101) For every subset B of E2

T such that B is a component of (L̃(SpStSeqD))c

and B is not Bounded holds B = LeftComp(SpStSeqD).

(102) RightComp(SpStSeqD) ⊆ BDD L̃(SpStSeqD) and

RightComp(SpStSeqD) is Bounded.

(103) LeftComp(SpStSeqD) = UBD L̃(SpStSeqD) and

RightComp(SpStSeqD) = BDD L̃(SpStSeqD).

(104) UBD L̃(SpStSeqD) 6= ∅ and UBD L̃(SpStSeqD) is outside component

of L̃(SpStSeqD) and BDD L̃(SpStSeqD) 6= ∅ and BDD L̃(SpStSeqD) is

inside component of L̃(SpStSeqD).

3. Jordan Property and Boundary Property

One can prove the following propositions:

(105) Let G be a non empty topological space and A be a subset of G. Suppose

Ac 6= ∅. Then A is boundary if and only if for every set x and for every

subset V of G such that x ∈ A and x ∈ V and V is open there exists

a subset B of the carrier of G such that B is a component of Ac and

V ∩B 6= ∅.
(106) Let A be a subset of E2

T. Suppose A
c 6= ∅. Then A is boundary and Jordan

if and only if there exist subsets A1, A2 of E2

T such that A
c = A1 ∪A2 and

A1∩A2 = ∅ and A1 \A1 = A2 \A2 and A = A1 \A1 and for all subsets C1,

C2 of (E2

T)↾A
c such that C1 = A1 and C2 = A2 holds C1 is a component

of (E2

T)↾A
c and C2 is a component of (E2

T)↾A
c.

(107) For every point p of En
T and for every subset P of En

T such that n ­ 1

and P = {p} holds P is boundary.

(108) For all points p, q of E2

T and for every r such that p1 = q2 and −p2 = q1
and p = r · q holds p1 = 0 and p2 = 0 and p = 0E2

T

.

(109) For all points q1, q2 of E2

T holds L(q1, q2) is boundary.

Let q1, q2 be points of E2

T. Observe that L(q1, q2) is boundary.

One can prove the following proposition

(110) For every finite sequence f of elements of E2

T holds L̃(f) is boundary.

Let f be a finite sequence of elements of E2

T. Note that L̃(f) is boundary.

We now state several propositions:
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(111) For every point e1 of En and for all points p, q of En
T such that p = e1

and q ∈ Ball(e1, r) holds |p− q| < r and |q − p| < r.

(112) Let a be a real number and p be a point of E2

T. Suppose a > 0

and p ∈ L̃(SpStSeqD). Then there exists a point q of E2

T such that

q ∈ UBD L̃(SpStSeqD) and |p− q| < a.

(113) R0 = {0E0
T

}.
(114) For every subset A of En

T such that A is Bounded holds BDDA is Boun-

ded.

(115) Let G be a non empty topological space and A, B, C, D be subsets of

G. Suppose A is a component of G and B is a component of G and C is

a component of G and A ∪ B = the carrier of G and C ∩ A = ∅. Then
C = B.

(116) For every subset A of E2

T such that A is Bounded and Jordan holds

BDDA is inside component of A.

(117) Let a be a real number and p be a point of E2

T. Suppose a > 0

and p ∈ L̃(SpStSeqD). Then there exists a point q of E2

T such that

q ∈ BDD L̃(SpStSeqD) and |p− q| < a.

4. Points in LeftComp

In the sequel f denotes a clockwise oriented non constant standard special

circular sequence.

Next we state four propositions:

(118) For every point p of E2

T such that π1f = N-min L̃(f) and p1 <

W-bound L̃(f) holds p ∈ LeftComp(f).

(119) For every point p of E2

T such that π1f = N-min L̃(f) and p1 >

E-bound L̃(f) holds p ∈ LeftComp(f).

(120) For every point p of E2

T such that π1f = N-min L̃(f) and p2 <

S-bound L̃(f) holds p ∈ LeftComp(f).

(121) For every point p of E2

T such that π1f = N-min L̃(f) and p2 >

N-bound L̃(f) holds p ∈ LeftComp(f).
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