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Summary. The main goal of the paper consists in proving schemes for
defining by structural induction in the language defined by Adam Grabowski
[13]. The article consists of four parts. Besides the preliminaries where we prove
some simple facts still missing in the library, they are:

- “About the language” in which the consequences of the fact that the algebra
of formulae is free are formulated,

- “Defining by structural induction” in which two schemes are proved,

- “The tree of the subformulae” in which a scheme proved in the previous
section is used to define the tree of subformulae; also some simple facts about
the tree are proved.

MML Identifier: HILBERT2.

The terminology and notation used in this paper are introduced in the following

papers: [16], [19], [1], [14], [20], [10], [12], [18], [8], [15], [9], [11], [3], [17], [2], [4],

[5], [6], [7], and [13].

1. Preliminaries

In this paper X, x denote sets.

We now state four propositions:

(1) Let Z be a set and M be a many sorted set indexed by Z. Suppose that

for every set x such that x ∈ Z holds M(x) is a many sorted set indexed

by x. Let f be a function. If f = UnionM, then dom f =
⋃

Z.

(2) For all sets x, y and for all finite sequences f , g such that 〈x〉af = 〈y〉ag

holds f = g.
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(3) If 〈x〉 is a finite sequence of elements of X, then x ∈ X.

(4) Let given X and f be a finite sequence of elements of X. Suppose f 6= ε.

Then there exists a finite sequence g of elements of X and there exists an

element d of X such that f = g a 〈d〉.

We adopt the following rules:m, n are natural numbers, p, q, r, s are elements

of HP-WFF, and T1, T2 are trees.

Next we state the proposition

(5) 〈x〉 ∈
︷ ︸︸ ︷

T1, T2 iff x = 0 or x = 1.

Let us mention that ε is tree yielding.

The scheme InTreeInd deals with a tree A and and states that:

For every element f of A holds P[f ]

provided the following conditions are satisfied:

• P[εN], and

• For every element f of A such that P[f ] and for every n such that

f a 〈n〉 ∈ A holds P[f a 〈n〉].

In the sequel D is a non empty set and T1, T2 are decorated trees.

Next we state three propositions:

(6) For every set x and for all T1, T2 holds (x-tree(T1, T2))(ε) = x.

(7) (x-tree(T1, T2))(〈0〉) = T1(ε) and (x-tree(T1, T2))(〈1〉) = T2(ε).

(8) (x-tree(T1, T2))↾〈0〉 = T1 and (x-tree(T1, T2))↾〈1〉 = T2.

Let us consider x and let p be a decorated tree yielding non empty finite

sequence. Observe that x-tree(p) is non root.

Let us consider x and let T1 be a decorated tree. Observe that x-tree(T1) is

non root. Let T2 be a decorated tree. Observe that x-tree(T1, T2) is non root.

2. About the Language

Let us consider n. The functor propn yielding an element of HP-WFF is

defined as follows:

(Def. 1) propn = 〈3 + n〉.

Let D be a set. Let us observe that D has VERUM if and only if:

(Def. 2) VERUM ∈ D.

Let us observe that D has propositional variables if and only if:

(Def. 3) For every n holds propn ∈ D.

Let D be a subset of HP-WFF. Let us observe that D has implication if and

only if:

(Def. 4) For all p, q such that p ∈ D and q ∈ D holds p⇒ q ∈ D.

Let us observe that D has conjunction if and only if:
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(Def. 5) For all p, q such that p ∈ D and q ∈ D holds p ∧ q ∈ D.

In the sequel t denotes a finite sequence.

Let us consider p. We say that p is conjunctive if and only if:

(Def. 6) There exist r, s such that p = r ∧ s.

We say that p is conditional if and only if:

(Def. 7) There exist r, s such that p = r ⇒ s.

We say that p is simple if and only if:

(Def. 8) There exists n such that p = propn.

The scheme HP Ind concerns and states that:

For every r holds P[r]

provided the following requirements are met:

• P[VERUM],

• For every n holds P[propn], and

• For all r, s such that P[r] and P[s] holds P[r ∧ s] and P[r ⇒ s].

Next we state a number of propositions:

(9) p is conjunctive, or conditional, or simple or p = VERUM .

(10) len p ­ 1.

(11) If p(1) = 1, then p is conditional.

(12) If p(1) = 2, then p is conjunctive.

(13) If p(1) = 3 + n, then p is simple.

(14) If p(1) = 0, then p = VERUM .

(15) len p < len(p ∧ q) and len q < len(p ∧ q).

(16) len p < len(p⇒ q) and len q < len(p⇒ q).

(17) If p = q a t, then p = q.

(18) If p a q = r a s, then p = r and q = s.

(19) If p ∧ q = r ∧ s, then p = r and s = q.

(20) If p⇒ q = r ⇒ s, then p = r and s = q.

(21) If propn = propm, then n = m.

(22) p ∧ q 6= r ⇒ s.

(23) p ∧ q 6= VERUM .

(24) p ∧ q 6= propn.

(25) p⇒ q 6= VERUM .

(26) p⇒ q 6= propn.

(27) p ∧ q 6= p and p ∧ q 6= q.

(28) p⇒ q 6= p and p⇒ q 6= q.

(29) VERUM 6= propn.
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3. Defining by Structural Induction

Now we present two schemes. The scheme HP MSSExL deals with a set A,

a unary functor F yielding a set, and a 5-ary predicate Q, and states that:

There exists a many sorted setM indexed by HP-WFF such that

(i) M(VERUM) = A,

(ii) for every n holds M(propn) = F(n), and

(iii) for all p, q and for all sets a, b, c, d such that a = M(p) and

b = M(q) and c = M(p∧q) and d = M(p⇒ q) holds P[p, q, a, b, c]

and Q[p, q, a, b, d]

provided the following conditions are met:

• For all p, q and for all sets a, b there exists a set c such that

P[p, q, a, b, c],

• For all p, q and for all sets a, b there exists a set d such that

Q[p, q, a, b, d],

• For all p, q and for all sets a, b, c, d such that P[p, q, a, b, c] and

P[p, q, a, b, d] holds c = d, and

• For all p, q and for all sets a, b, c, d such that Q[p, q, a, b, c] and

Q[p, q, a, b, d] holds c = d.

The scheme HP MSSLambda deals with a set A, a unary functor F yielding

a set, and two binary functors G and H yielding sets, and states that:

There exists a many sorted setM indexed by HP-WFF such that

(i) M(VERUM) = A,

(ii) for every n holds M(propn) = F(n), and

(iii) for all p, q and for all sets x, y such that x = M(p) and

y = M(q) holds M(p ∧ q) = G(x, y) and M(p⇒ q) = H(x, y)

for all values of the parameters.

4. The Tree of the Subformulae

The many sorted set HP-Subformulae indexed by HP-WFF is defined by the

conditions (Def. 9).

(Def. 9)(i) (HP-Subformulae)(VERUM) = the root tree of VERUM,

(ii) for every n holds (HP-Subformulae)(propn) = the root tree of propn,

and

(iii) for all p, q there exist trees p′, q′ decorated with elements of HP-WFF

such that p′ = (HP-Subformulae)(p) and q′ = (HP-Subformulae)(q) and

(HP-Subformulae)(p ∧ q) = p ∧ q-tree(p′, q′) and (HP-Subformulae)(p ⇒

q) = (p⇒ q)-tree(p′, q′).
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Let us consider p. The functor Subformulae p yielding a tree decorated with

elements of HP-WFF is defined by:

(Def. 10) Subformulae p = (HP-Subformulae)(p).

The following propositions are true:

(30) SubformulaeVERUM = the root tree of VERUM.

(31) Subformulae propn = the root tree of propn.

(32) Subformulae(p ∧ q) = p ∧ q-tree(Subformulae p,Subformulae q).

(33) Subformulae(p⇒ q) = (p⇒ q)-tree(Subformulae p,Subformulae q).

(34) (Subformulae p)(ε) = p.

(35) For every element f of domSubformulae p holds Subformulae p↾f =

Subformulae(Subformulae p)(f).

(36) If p ∈ Leaves(Subformulae q), then p = VERUM or p is simple.
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