Defining by Structural Induction in the Positive Propositional Language

Andrzej Trybulec University of Białystok

Summary. The main goal of the paper consists in proving schemes for defining by structural induction in the language defined by Adam Grabowski [13]. The article consists of four parts. Besides the preliminaries where we prove some simple facts still missing in the library, they are:

- "About the language" in which the consequences of the fact that the algebra of formulae is free are formulated,
 - "Defining by structural induction" in which two schemes are proved,
- "The tree of the subformulae" in which a scheme proved in the previous section is used to define the tree of subformulae; also some simple facts about the tree are proved.

MML Identifier: HILBERT2.

The terminology and notation used in this paper are introduced in the following papers: [16], [19], [1], [14], [20], [10], [12], [18], [8], [15], [9], [11], [3], [17], [2], [4], [5], [6], [7], and [13].

1. Preliminaries

In this paper X, x denote sets.

We now state four propositions:

- (1) Let Z be a set and M be a many sorted set indexed by Z. Suppose that for every set x such that $x \in Z$ holds M(x) is a many sorted set indexed by x. Let f be a function. If f = Union M, then dom $f = \bigcup Z$.
- (2) For all sets x, y and for all finite sequences f, g such that $\langle x \rangle \hat{} f = \langle y \rangle \hat{} g$ holds f = g.

- (3) If $\langle x \rangle$ is a finite sequence of elements of X, then $x \in X$.
- (4) Let given X and f be a finite sequence of elements of X. Suppose $f \neq \varepsilon$. Then there exists a finite sequence g of elements of X and there exists an element d of X such that $f = g \cap \langle d \rangle$.

We adopt the following rules: m, n are natural numbers, p, q, r, s are elements of HP-WFF, and T_1, T_2 are trees.

Next we state the proposition

(5)
$$\langle x \rangle \in \widetilde{T_1, T_2} \text{ iff } x = 0 \text{ or } x = 1.$$

Let us mention that ε is tree yielding.

The scheme InTreeInd deals with a tree A and and states that:

For every element f of \mathcal{A} holds $\mathcal{P}[f]$

provided the following conditions are satisfied:

- $\mathcal{P}[\varepsilon_{\mathbb{N}}]$, and
- For every element f of \mathcal{A} such that $\mathcal{P}[f]$ and for every n such that $f \cap \langle n \rangle \in \mathcal{A}$ holds $\mathcal{P}[f \cap \langle n \rangle]$.

In the sequel D is a non empty set and T_1 , T_2 are decorated trees.

Next we state three propositions:

- (6) For every set x and for all T_1 , T_2 holds $(x\text{-tree}(T_1, T_2))(\varepsilon) = x$.
- (7) $(x\text{-tree}(T_1, T_2))(\langle 0 \rangle) = T_1(\varepsilon)$ and $(x\text{-tree}(T_1, T_2))(\langle 1 \rangle) = T_2(\varepsilon)$.
- (8) $(x\text{-tree}(T_1, T_2)) \upharpoonright \langle 0 \rangle = T_1 \text{ and } (x\text{-tree}(T_1, T_2)) \upharpoonright \langle 1 \rangle = T_2.$

Let us consider x and let p be a decorated tree yielding non empty finite sequence. Observe that x-tree(p) is non root.

Let us consider x and let T_1 be a decorated tree. Observe that x-tree (T_1) is non root. Let T_2 be a decorated tree. Observe that x-tree (T_1, T_2) is non root.

2. About the Language

Let us consider n. The functor prop n yielding an element of HP-WFF is defined as follows:

(Def. 1) $\operatorname{prop} n = \langle 3 + n \rangle$.

Let D be a set. Let us observe that D has VERUM if and only if:

(Def. 2) $VERUM \in D$.

Let us observe that D has propositional variables if and only if:

(Def. 3) For every n holds prop $n \in D$.

Let D be a subset of HP-WFF. Let us observe that D has implication if and only if:

(Def. 4) For all p, q such that $p \in D$ and $q \in D$ holds $p \Rightarrow q \in D$.

Let us observe that D has conjunction if and only if:

(Def. 5) For all p, q such that $p \in D$ and $q \in D$ holds $p \land q \in D$. In the sequel t denotes a finite sequence.

Let us consider p. We say that p is conjunctive if and only if:

(Def. 6) There exist r, s such that $p = r \wedge s$. We say that p is conditional if and only if:

(Def. 7) There exist r, s such that $p = r \Rightarrow s$.

We say that p is simple if and only if:

(Def. 8) There exists n such that p = prop n.

The scheme $HP\ Ind$ concerns and states that:

For every r holds $\mathcal{P}[r]$

provided the following requirements are met:

- $\mathcal{P}[VERUM]$,
- For every n holds $\mathcal{P}[\text{prop } n]$, and
- For all r, s such that $\mathcal{P}[r]$ and $\mathcal{P}[s]$ holds $\mathcal{P}[r \wedge s]$ and $\mathcal{P}[r \Rightarrow s]$.

Next we state a number of propositions:

- (9) p is conjunctive, or conditional, or simple or p = VERUM.
- (10) $len p \ge 1$.
- (11) If p(1) = 1, then p is conditional.
- (12) If p(1) = 2, then p is conjunctive.
- (13) If p(1) = 3 + n, then p is simple.
- (14) If p(1) = 0, then p = VERUM.
- (15) $\operatorname{len} p < \operatorname{len}(p \wedge q)$ and $\operatorname{len} q < \operatorname{len}(p \wedge q)$.
- (16) $\operatorname{len} p < \operatorname{len}(p \Rightarrow q)$ and $\operatorname{len} q < \operatorname{len}(p \Rightarrow q)$.
- (17) If $p = q \cap t$, then p = q.
- (18) If $p \cap q = r \cap s$, then p = r and q = s.
- (19) If $p \wedge q = r \wedge s$, then p = r and s = q.
- (20) If $p \Rightarrow q = r \Rightarrow s$, then p = r and s = q.
- (21) If prop n = prop m, then n = m.
- (22) $p \wedge q \neq r \Rightarrow s$.
- (23) $p \wedge q \neq VERUM$.
- (24) $p \wedge q \neq \text{prop } n$.
- (25) $p \Rightarrow q \neq VERUM$.
- (26) $p \Rightarrow q \neq \text{prop } n$.
- (27) $p \land q \neq p \text{ and } p \land q \neq q.$
- (28) $p \Rightarrow q \neq p \text{ and } p \Rightarrow q \neq q.$
- (29) VERUM \neq prop n.

3. Defining by Structural Induction

Now we present two schemes. The scheme HP MSSExL deals with a set \mathcal{A} , a unary functor \mathcal{F} yielding a set, and a 5-ary predicate \mathcal{Q} , and states that:

There exists a many sorted set M indexed by HP-WFF such that

- (i) M(VERUM) = A,
- (ii) for every n holds $M(\text{prop } n) = \mathcal{F}(n)$, and
- (iii) for all p, q and for all sets a, b, c, d such that a = M(p) and b = M(q) and $c = M(p \land q)$ and $d = M(p \Rightarrow q)$ holds $\mathcal{P}[p, q, a, b, c]$ and $\mathcal{Q}[p, q, a, b, d]$

provided the following conditions are met:

- For all p, q and for all sets a, b there exists a set c such that $\mathcal{P}[p,q,a,b,c]$,
- For all p, q and for all sets a, b there exists a set d such that $\mathcal{Q}[p,q,a,b,d]$,
- For all p, q and for all sets a, b, c, d such that $\mathcal{P}[p, q, a, b, c]$ and $\mathcal{P}[p, q, a, b, d]$ holds c = d, and
- For all p, q and for all sets a, b, c, d such that $\mathcal{Q}[p, q, a, b, c]$ and $\mathcal{Q}[p, q, a, b, d]$ holds c = d.

The scheme HP MSSLambda deals with a set \mathcal{A} , a unary functor \mathcal{F} yielding a set, and two binary functors \mathcal{G} and \mathcal{H} yielding sets, and states that:

There exists a many sorted set M indexed by HP-WFF such that

- (i) M(VERUM) = A,
- (ii) for every n holds $M(\text{prop } n) = \mathcal{F}(n)$, and
- (iii) for all p, q and for all sets x, y such that x = M(p) and y = M(q) holds $M(p \wedge q) = \mathcal{G}(x, y)$ and $M(p \Rightarrow q) = \mathcal{H}(x, y)$ for all values of the parameters.

4. The Tree of the Subformulae

The many sorted set HP-Subformulae indexed by HP-WFF is defined by the conditions (Def. 9).

- (Def. 9)(i) (HP-Subformulae)(VERUM) = the root tree of VERUM,
 - (ii) for every n holds (HP-Subformulae)(prop n) = the root tree of prop n, and
 - (iii) for all p, q there exist trees p', q' decorated with elements of HP-WFF such that p' = (HP-Subformulae)(p) and q' = (HP-Subformulae)(q) and $(\text{HP-Subformulae})(p \wedge q) = p \wedge q\text{-tree}(p', q')$ and $(\text{HP-Subformulae})(p \Rightarrow q) = (p \Rightarrow q)\text{-tree}(p', q')$.

Let us consider p. The functor Subformulae p yielding a tree decorated with elements of HP-WFF is defined by:

(Def. 10) Subformulae p = (HP-Subformulae)(p).

The following propositions are true:

- (30) Subformulae VERUM = the root tree of VERUM.
- (31) Subformulae prop n =the root tree of prop n.
- (32) Subformulae $(p \land q) = p \land q$ -tree(Subformulae p, Subformulae q).
- (33) Subformulae $(p \Rightarrow q) = (p \Rightarrow q)$ -tree(Subformulae p, Subformulae q).
- (34) (Subformulae p)(ε) = p.
- (35) For every element f of dom Subformulae p holds Subformulae p
 abla f = Subformulae(Subformulae <math>p)(f).
- (36) If $p \in \text{Leaves}(\text{Subformulae } q)$, then p = VERUM or p is simple.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
- [3] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547–552, 1991.
- [4] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397–402, 1991.
- [5] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195–204, 1992.
- [6] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82, 1993
- [7] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185–190, 1996.
- [8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [9] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676, 1990.
- [10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [11] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [12] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [13] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics, 8(1):69–72, 1999.
- [14] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [15] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [17] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [19] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received April 23, 1999