Properties of Left and Right Components

Artur Korniłowicz¹ University of Białystok

MML Identifier: GOBRD14.

The notation and terminology used here have been introduced in the following papers: [33], [42], [43], [6], [7], [41], [5], [16], [35], [1], [30], [38], [31], [17], [27], [8], [19], [39], [18], [20], [15], [4], [2], [3], [40], [32], [29], [44], [12], [28], [11], [13], [14], [21], [22], [25], [34], [10], [24], [23], [37], [36], [26], and [9].

1. Components

For simplicity, we adopt the following rules: r denotes a real number, i, j, n denote natural numbers, f denotes a non constant standard special circular sequence, g denotes a clockwise oriented non constant standard special circular sequence, p, q denote points of \mathcal{E}_{T}^{2} , P, Q, R denote subsets of \mathcal{E}_{T}^{2} , C denotes a compact non vertical non horizontal subset of \mathcal{E}_{T}^{2} , and G denotes a Go-board.

Next we state several propositions:

- (1) Let T be a topological space, A be a subset of the carrier of T, and B be a subset of T. If B is a component of A, then B is connected.
- (2) Let A be a subset of the carrier of \mathcal{E}_{T}^{n} and B be a subset of \mathcal{E}_{T}^{n} . If B is inside component of A, then B is connected.
- (3) Let A be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^n$ and B be a subset of $\mathcal{E}_{\mathrm{T}}^n$. If B is outside component of A, then B is connected.
- (4) For every subset A of the carrier of $\mathcal{E}_{\mathrm{T}}^n$ and for every subset B of $\mathcal{E}_{\mathrm{T}}^n$ such that B is a component of A^c holds $A \cap B = \emptyset$.
- (5) If P is outside component of Q and R is inside component of Q, then $P \cap R = \emptyset$.

C 1999 University of Białystok ISSN 1426-2630

¹This paper was written while the author visited Shinshu University, winter 1999.

ARTUR KORNIŁOWICZ

- (6) Let A, B be subsets of $\mathcal{E}_{\mathrm{T}}^2$. Suppose A is outside component of $\widetilde{\mathcal{L}}(f)$ and B is outside component of $\widetilde{\mathcal{L}}(f)$. Then A = B.
- (7) Let p be a point of \mathcal{E}^2 . Suppose $p = 0_{\mathcal{E}^2_{\mathrm{T}}}$ and P is outside component of $\widetilde{\mathcal{L}}(f)$. Then there exists a real number r such that r > 0 and $\mathrm{Ball}(p, r)^{\mathrm{c}} \subseteq P$.

Let C be a closed subset of $\mathcal{E}^2_{\mathrm{T}}$. Observe that BDD C is open and UBD C is open.

Let C be a compact subset of $\mathcal{E}^2_{\mathrm{T}}$. Observe that UBD C is connected.

2. Go-Boards

One can prove the following proposition

(8) For every finite sequence f of elements of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $\widetilde{\mathcal{L}}(f) \neq \emptyset$ holds $2 \leq \mathrm{len} f$.

Let n be a natural number and let a, b be points of $\mathcal{E}_{\mathrm{T}}^{n}$. The functor $\rho(a, b)$ yields a real number and is defined by:

(Def. 1) There exist points p, q of \mathcal{E}^n such that p = a and q = b and $\rho(a, b) = \rho(p, q)$.

Let us notice that the functor $\rho(a, b)$ is commutative.

The following propositions are true:

- (9) $\rho(p,q) = \sqrt{(p_1 q_1)^2 + (p_2 q_2)^2}.$
- (10) For every point p of $\mathcal{E}_{\mathrm{T}}^n$ holds $\rho(p,p) = 0$.
- (11) For all points p, q, r of $\mathcal{E}^n_{\mathrm{T}}$ holds $\rho(p, r) \leq \rho(p, q) + \rho(q, r)$.
- (12) Let x_1, x_2, y_1, y_2 be real numbers and a, b be points of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $x_1 \leq a_1$ and $a_1 \leq x_2$ and $y_1 \leq a_2$ and $a_2 \leq y_2$ and $x_1 \leq b_1$ and $b_1 \leq x_2$ and $y_1 \leq b_2$ and $b_2 \leq y_2$. Then $\rho(a, b) \leq |x_2 x_1| + |y_2 y_1|$.
- (13) If $1 \leq i$ and $i < \operatorname{len} G$ and $1 \leq j$ and $j < \operatorname{width} G$, then $\operatorname{cell}(G, i, j) = \prod [1 \longmapsto [(G_{i,1})_1, (G_{i+1,1})_1], 2 \longmapsto [(G_{1,j})_2, (G_{1,j+1})_2]].$
- (14) If $1 \leq i$ and i < len G and $1 \leq j$ and j < width G, then cell(G, i, j) is compact.
- (15) If $\langle i, j \rangle \in$ the indices of G and $\langle i + n, j \rangle \in$ the indices of G, then $\rho(G_{i,j}, G_{i+n,j}) = (G_{i+n,j})_1 (G_{i,j})_1$.
- (16) If $\langle i, j \rangle \in$ the indices of G and $\langle i, j + n \rangle \in$ the indices of G, then $\rho(G_{i,j}, G_{i,j+n}) = (G_{i,j+n})_2 (G_{i,j})_2$.
- (17) $3 \leq \operatorname{len} \operatorname{Gauge}(C, n) 1$.
- (18) Suppose $i \leq j$. Let a, b be natural numbers. Suppose $2 \leq a$ and $a \leq$ len Gauge(C, i) 1 and $2 \leq b$ and $b \leq$ len Gauge(C, i) 1. Then there exist natural numbers c, d such that

164

 $2 \leq c$ and $c \leq \text{len Gauge}(C, j) - 1$ and $2 \leq d$ and $d \leq \text{len Gauge}(C, j) - 1$ 1 and $\langle c, d \rangle \in \text{the indices of Gauge}(C, j)$ and $(\text{Gauge}(C, i))_{a,b} = (\text{Gauge}(C, j))_{c,d}$ and $c = 2 + 2^{j-i} \cdot (a - 2)$ and $d = 2 + 2^{j-i} \cdot (b - 2)$.

- (19) If $\langle i, j \rangle \in$ the indices of Gauge(C, n) and $\langle i, j + 1 \rangle \in$ the indices of Gauge(C, n), then $\rho((\text{Gauge}(C, n))_{i,j}, (\text{Gauge}(C, n))_{i,j+1}) = \frac{N-\text{bound }C-S-\text{bound }C}{2^n}$.
- (20) If $\langle i, j \rangle \in$ the indices of Gauge(C, n) and $\langle i + 1, j \rangle \in$ the indices of Gauge(C, n), then $\rho((\text{Gauge}(C, n))_{i,j}, (\text{Gauge}(C, n))_{i+1,j}) = \frac{E-\text{bound }C-W-\text{bound }C}{2^n}$.
- (21) If r > 0, then there exists a natural number n such that $\rho((\operatorname{Gauge}(C, n))_{1,1}, (\operatorname{Gauge}(C, n))_{1,2}) < r$ and $\rho((\operatorname{Gauge}(C, n))_{1,1}, (\operatorname{Gauge}(C, n))_{2,1}) < r$.

3. LeftComp and RightComp

One can prove the following propositions:

- (22) For every subset P of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright (\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ such that P is a component of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright (\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ holds $P = \mathrm{RightComp}(f)$ or $P = \mathrm{LeftComp}(f)$.
- (23) Let A_1 , A_2 be subsets of \mathcal{E}^2_T . Suppose that
 - (i) $(\mathcal{L}(f))^{\mathrm{c}} = A_1 \cup A_2,$
 - (ii) $A_1 \cap A_2 = \emptyset$, and
- (iii) for all subsets C_1 , C_2 of $(\mathcal{E}^2_T) \upharpoonright (\mathcal{L}(f))^c$ such that $C_1 = A_1$ and $C_2 = A_2$ holds C_1 is a component of $(\mathcal{E}^2_T) \upharpoonright (\mathcal{\widetilde{L}}(f))^c$ and C_2 is a component of $(\mathcal{E}^2_T) \upharpoonright (\mathcal{\widetilde{L}}(f))^c$.

Then $A_1 = \text{RightComp}(f)$ and $A_2 = \text{LeftComp}(f)$ or $A_1 = \text{LeftComp}(f)$ and $A_2 = \text{RightComp}(f)$.

- (24) LeftComp $(f) \cap \text{RightComp}(f) = \emptyset$.
- (25) $\mathcal{L}(f) \cup \text{RightComp}(f) \cup \text{LeftComp}(f) = \text{the carrier of } \mathcal{E}_{\mathrm{T}}^2.$
- (26) $p \in \mathcal{L}(f)$ iff $p \notin \text{LeftComp}(f)$ and $p \notin \text{RightComp}(f)$.
- (27) $p \in \text{LeftComp}(f)$ iff $p \notin \mathcal{L}(f)$ and $p \notin \text{RightComp}(f)$.
- (28) $p \in \operatorname{RightComp}(f)$ iff $p \notin \widetilde{\mathcal{L}}(f)$ and $p \notin \operatorname{LeftComp}(f)$.
- (29) $\widetilde{\mathcal{L}}(f) = \overline{\operatorname{RightComp}(f)} \setminus \operatorname{RightComp}(f).$
- (30) $\widetilde{\mathcal{L}}(f) = \overline{\text{LeftComp}(f)} \setminus \text{LeftComp}(f).$
- (31) $\overline{\operatorname{RightComp}(f)} = \operatorname{RightComp}(f) \cup \widetilde{\mathcal{L}}(f).$
- (32) $\overline{\text{LeftComp}(f)} = \text{LeftComp}(f) \cup \widetilde{\mathcal{L}}(f).$

Let f be a non constant standard special circular sequence. One can verify that $\widetilde{\mathcal{L}}(f)$ is Jordan.

The following propositions are true:

ARTUR KORNIŁOWICZ

- (33) If $\pi_1 g = \text{N-min} \widetilde{\mathcal{L}}(g)$ and $p \in \text{RightComp}(g)$, then W-bound $\widetilde{\mathcal{L}}(g) < p_1$.
- (34) If $\pi_1 g = \text{N-min} \widetilde{\mathcal{L}}(g)$ and $p \in \text{RightComp}(g)$, then E-bound $\widetilde{\mathcal{L}}(g) > p_1$.
- (35) If $\pi_1 g = \operatorname{N-min} \widetilde{\mathcal{L}}(g)$ and $p \in \operatorname{RightComp}(g)$, then N-bound $\widetilde{\mathcal{L}}(g) > p_2$.
- (36) If $\pi_1 g = \text{N-min} \widetilde{\mathcal{L}}(g)$ and $p \in \text{RightComp}(g)$, then S-bound $\widetilde{\mathcal{L}}(g) < p_2$.
- (37) If $p \in \operatorname{RightComp}(f)$ and $q \in \operatorname{LeftComp}(f)$, then $\mathcal{L}(p,q) \cap \widetilde{\mathcal{L}}(f) \neq \emptyset$.
- (38) $\overline{\operatorname{RightComp}(\operatorname{SpStSeq} C)} = \prod [1 \longmapsto [\operatorname{W-bound} \widetilde{\mathcal{L}}(\operatorname{SpStSeq} C), \\ \operatorname{E-bound} \widetilde{\mathcal{L}}(\operatorname{SpStSeq} C)], 2 \longmapsto [\operatorname{S-bound} \widetilde{\mathcal{L}}(\operatorname{SpStSeq} C), \\ \operatorname{N-bound} \widetilde{\mathcal{L}}(\operatorname{SpStSeq} C)]].$
- (39) $(\operatorname{proj1})^{\circ} \widetilde{\mathcal{L}}(f) \subseteq (\operatorname{proj1})^{\circ} \overline{\operatorname{RightComp}(f)} \text{ and if } \pi_1 f = \operatorname{N-min} \widetilde{\mathcal{L}}(f) \text{ and } f$ is clockwise oriented, then $(\operatorname{proj1})^{\circ} \overline{\operatorname{RightComp}(f)} = (\operatorname{proj1})^{\circ} \widetilde{\mathcal{L}}(f).$
- (40) $(\operatorname{proj2})^{\circ} \widetilde{\mathcal{L}}(f) \subseteq (\operatorname{proj2})^{\circ} \overline{\operatorname{RightComp}(f)} \text{ and if } \pi_1 f = \operatorname{N-min} \widetilde{\mathcal{L}}(f) \text{ and } f$ is clockwise oriented, then $(\operatorname{proj2})^{\circ} \overline{\operatorname{RightComp}(f)} = (\operatorname{proj2})^{\circ} \widetilde{\mathcal{L}}(f).$
- (41) If $\pi_1 g = \text{N-min } \mathcal{L}(g)$, then RightComp $(g) \subseteq \text{RightComp}(\text{SpStSeq } \mathcal{L}(g))$.
- (42) If $\pi_1 g = \text{N-min} \widetilde{\mathcal{L}}(g)$, then $\overline{\text{RightComp}(g)}$ is compact.
- (43) If $\pi_1 g = \text{N-min} \widetilde{\mathcal{L}}(g)$, then LeftComp(g) is non Bounded.
- (44) If $\pi_1 g = \text{N-min}\,\widetilde{\mathcal{L}}(g)$, then LeftComp(g) is outside component of $\widetilde{\mathcal{L}}(g)$.
- (45) If $\pi_1 g = \text{N-min}\,\widetilde{\mathcal{L}}(g)$, then RightComp(g) is inside component of $\widetilde{\mathcal{L}}(g)$.
- (46) If $\pi_1 g = \operatorname{N-min} \widetilde{\mathcal{L}}(g)$, then UBD $\widetilde{\mathcal{L}}(g) = \operatorname{LeftComp}(g)$.
- (47) If $\pi_1 g = \text{N-min} \widetilde{\mathcal{L}}(g)$, then BDD $\widetilde{\mathcal{L}}(g) = \text{RightComp}(g)$.
- (48) If $\pi_1 g = \text{N-min} \widetilde{\mathcal{L}}(g)$ and P is outside component of $\widetilde{\mathcal{L}}(g)$, then P = LeftComp(g).
- (49) If $\pi_1 g = \text{N-min} \widetilde{\mathcal{L}}(g)$ and P is inside component of $\widetilde{\mathcal{L}}(g)$, then $P \cap \text{RightComp}(g) \neq \emptyset$.
- (50) If $\pi_1 g = \text{N-min} \widetilde{\mathcal{L}}(g)$ and P is inside component of $\widetilde{\mathcal{L}}(g)$, then $P = \text{BDD} \widetilde{\mathcal{L}}(g)$.
- (51) If $\pi_1 g = \operatorname{N-min} \widetilde{\mathcal{L}}(g)$, then W-bound $\widetilde{\mathcal{L}}(g) = \operatorname{W-bound} \operatorname{RightComp}(g)$.
- (52) If $\pi_1 g = \text{N-min}\,\widetilde{\mathcal{L}}(g)$, then E-bound $\widetilde{\mathcal{L}}(g) = \text{E-bound RightComp}(g)$.
- (53) If $\pi_1 g = \text{N-min}\,\widetilde{\mathcal{L}}(g)$, then N-bound $\widetilde{\mathcal{L}}(g) = \text{N-bound RightComp}(g)$.
- (54) If $\pi_1 g = \text{N-min} \widetilde{\mathcal{L}}(g)$, then S-bound $\widetilde{\mathcal{L}}(g) = \text{S-bound RightComp}(g)$.

Acknowledgments

I would like to thank Professor Yatsuka Nakamura for his help in the preparation of the article.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.

166

- [3] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [6] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [8] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
- [9] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25–27, 1999.
- [10] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Formalized Mathematics, 6(3):427–440, 1997.
- [11] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [12] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [13] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [14] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. *Formalized Mathematics*, 2(5):617–621, 1991.
- [15] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559–562, 1991.
 [16] Kennette Herminichie Decis generative of nuclear metrics. Even divide Mathematics.
- [16] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [17] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
- [18] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [19] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [20] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17–28, 1991.
- [21] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [22] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part II. Formalized Mathematics, 3(1):117–121, 1992.
- [23] Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet Theorem. Formalized Mathematics, 7(2):193–201, 1998.
- [24] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.
- [25] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [26] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. *Formalized Mathematics*, 8(1):1–13, 1999.
- [27] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [28] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [29] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [30] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [31] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213–216, 1991.
- [32] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [33] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [34] Andrzej Trybulec. Left and right component of the complement of a special closed curve. Formalized Mathematics, 5(4):465–468, 1996.

ARTUR KORNIŁOWICZ

- [35] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [36] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized Mathematics, 6(4):541–548, 1997.
- [37] Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the points of the plane. *Formalized Mathematics*, 6(4):531–539, 1997.
- [38] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [39] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [40] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [41] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [42] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [43] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [44] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.

Received May 5, 1999