# Properties of Left and Right Components 

Artur Korniłowicz ${ }^{1}$<br>University of Białystok

MML Identifier: GOBRD14.

The notation and terminology used here have been introduced in the following papers: [33], [42], [43], [6], [7], [41], [5], [16], [35], [1], [30], [38], [31], [17], [27], [8], [19], [39], [18], [20], [15], [4], [2], [3], [40], [32], [29], [44], [12], [28], [11], [13], [14], [21], [22], [25], [34], [10], [24], [23], [37], [36], [26], and [9].

## 1. Components

For simplicity, we adopt the following rules: $r$ denotes a real number, $i, j$, $n$ denote natural numbers, $f$ denotes a non constant standard special circular sequence, $g$ denotes a clockwise oriented non constant standard special circular sequence, $p, q$ denote points of $\mathcal{E}_{\mathrm{T}}^{2}, P, Q, R$ denote subsets of $\mathcal{E}_{\mathrm{T}}^{2}, C$ denotes a compact non vertical non horizontal subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and $G$ denotes a Go-board.

Next we state several propositions:
(1) Let $T$ be a topological space, $A$ be a subset of the carrier of $T$, and $B$ be a subset of $T$. If $B$ is a component of $A$, then $B$ is connected.
(2) Let $A$ be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and $B$ be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. If $B$ is inside component of $A$, then $B$ is connected.
(3) Let $A$ be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and $B$ be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. If $B$ is outside component of $A$, then $B$ is connected.
(4) For every subset $A$ of the carrier of $\mathcal{E}_{\mathrm{T}}^{n}$ and for every subset $B$ of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $B$ is a component of $A^{\text {c }}$ holds $A \cap B=\emptyset$.
(5) If $P$ is outside component of $Q$ and $R$ is inside component of $Q$, then $P \cap R=\emptyset$.

[^0](6) Let $A, B$ be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $A$ is outside component of $\widetilde{\mathcal{L}}(f)$ and $B$ is outside component of $\widetilde{\mathcal{L}}(f)$. Then $A=B$.
(7) Let $p$ be a point of $\mathcal{E}^{2}$. Suppose $p=0_{\mathcal{E}_{\mathrm{T}}^{2}}$ and $P$ is outside component of $\widetilde{\mathcal{L}}(f)$. Then there exists a real number $r$ such that $r>0$ and $\operatorname{Ball}(p, r)^{\mathrm{c}} \subseteq$ $P$.
Let $C$ be a closed subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Observe that $\operatorname{BDD} C$ is open and $\operatorname{UBD} C$ is open.

Let $C$ be a compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Observe that $\mathrm{UBD} C$ is connected.

## 2. Go-Boards

One can prove the following proposition
(8) For every finite sequence $f$ of elements of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $\widetilde{\mathcal{L}}(f) \neq \emptyset$ holds $2 \leqslant \operatorname{len} f$.
Let $n$ be a natural number and let $a, b$ be points of $\mathcal{E}_{\mathrm{T}}^{n}$. The functor $\rho(a, b)$ yields a real number and is defined by:
(Def. 1) There exist points $p, q$ of $\mathcal{E}^{n}$ such that $p=a$ and $q=b$ and $\rho(a, b)=$ $\rho(p, q)$.
Let us notice that the functor $\rho(a, b)$ is commutative.
The following propositions are true:
(9) $\rho(p, q)=\sqrt{\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2}}$.
(10) For every point $p$ of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $\rho(p, p)=0$.
(11) For all points $p, q, r$ of $\mathcal{E}_{\mathrm{T}}^{n}$ holds $\rho(p, r) \leqslant \rho(p, q)+\rho(q, r)$.
(12) Let $x_{1}, x_{2}, y_{1}, y_{2}$ be real numbers and $a, b$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $x_{1} \leqslant a_{1}$ and $a_{1} \leqslant x_{2}$ and $y_{1} \leqslant a_{2}$ and $a_{2} \leqslant y_{2}$ and $x_{1} \leqslant b_{1}$ and $b_{1} \leqslant x_{2}$ and $y_{1} \leqslant b_{2}$ and $b_{2} \leqslant y_{2}$. Then $\rho(a, b) \leqslant\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|$.
(13) If $1 \leqslant i$ and $i<\operatorname{len} G$ and $1 \leqslant j$ and $j<\operatorname{width} G$, then $\operatorname{cell}(G, i, j)=$ $\prod\left[1 \longmapsto\left[\left(G_{i, 1}\right)_{\mathbf{1}},\left(G_{i+1,1}\right)_{\mathbf{1}}\right], 2 \longmapsto\left[\left(G_{1, j}\right)_{\mathbf{2}},\left(G_{1, j+1}\right)_{\mathbf{2}}\right]\right]$.
(14) If $1 \leqslant i$ and $i<\operatorname{len} G$ and $1 \leqslant j$ and $j<\operatorname{width} G$, then $\operatorname{cell}(G, i, j)$ is compact.
(15) If $\langle i, j\rangle \in$ the indices of $G$ and $\langle i+n, j\rangle \in$ the indices of $G$, then $\rho\left(G_{i, j}, G_{i+n, j}\right)=\left(G_{i+n, j}\right)_{\mathbf{1}}-\left(G_{i, j}\right)_{\mathbf{1}}$.
(16) If $\langle i, j\rangle \in$ the indices of $G$ and $\langle i, j+n\rangle \in$ the indices of $G$, then $\rho\left(G_{i, j}, G_{i, j+n}\right)=\left(G_{i, j+n}\right)_{\mathbf{2}}-\left(G_{i, j}\right)_{\mathbf{2}}$.
(17) $3 \leqslant$ len Gauge $(C, n)-^{\prime} 1$.
(18) Suppose $i \leqslant j$. Let $a, b$ be natural numbers. Suppose $2 \leqslant a$ and $a \leqslant$ len $\operatorname{Gauge}(C, i)-1$ and $2 \leqslant b$ and $b \leqslant$ len $\operatorname{Gauge}(C, i)-1$. Then there exist natural numbers $c, d$ such that
$2 \leqslant c$ and $c \leqslant \operatorname{len} \operatorname{Gauge}(C, j)-1$ and $2 \leqslant d$ and $d \leqslant$ len Gauge $(C, j)-$ 1 and $\langle c, d\rangle \in$ the indices of Gauge $(C, j)$ and $(\operatorname{Gauge}(C, i))_{a, b}=$ $(\operatorname{Gauge}(C, j))_{c, d}$ and $c=2+2^{j-^{\prime} i} \cdot\left(a-^{\prime} 2\right)$ and $d=2+2^{j-^{\prime} i} \cdot\left(b-^{\prime} 2\right)$.
(19) If $\langle i, j\rangle \in$ the indices of Gauge $(C, n)$ and $\langle i, j+1\rangle \in$ the indices of Gauge $(C, n)$, then $\rho\left((\operatorname{Gauge}(C, n))_{i, j},(\operatorname{Gauge}(C, n))_{i, j+1}\right)=$ $\frac{\mathrm{N} \text {-bound } C \text {-S-bound } C}{2^{n}}$.
(20) If $\langle i, j\rangle \in$ the indices of $\operatorname{Gauge}(C, n)$ and $\langle i+1, j\rangle \in$ the indices of Gauge $(C, n)$, then $\rho\left((\operatorname{Gauge}(C, n))_{i, j},(\operatorname{Gauge}(C, n))_{i+1, j}\right)=$ $\frac{\text { E-bound } C-\text { W-bound } C}{2^{n}}$.
(21) If $r>0$, then there exists a natural number $n$ such that $\rho\left((\operatorname{Gauge}(C, n))_{1,1},(\operatorname{Gauge}(C, n))_{1,2}\right)<r$ and $\rho\left((\operatorname{Gauge}(C, n))_{1,1},(\operatorname{Gauge}(C, n))_{2,1}\right)<r$.

## 3. LeftComp and RightComp

One can prove the following propositions:
(22) For every subset $P$ of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright(\widetilde{\mathcal{L}}(f))^{\text {c }}$ such that $P$ is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ holds $P=\operatorname{RightComp}(f)$ or $P=\operatorname{LeftComp}(f)$.
(23) Let $A_{1}, A_{2}$ be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that
(i) $(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}=A_{1} \cup A_{2}$,
(ii) $A_{1} \cap A_{2}=\emptyset$, and
(iii) for all subsets $C_{1}, C_{2}$ of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$ such that $C_{1}=A_{1}$ and $C_{2}=$ $A_{2}$ holds $C_{1}$ is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright(\tilde{\mathcal{L}}(f))^{\mathrm{c}}$ and $C_{2}$ is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright(\widetilde{\mathcal{L}}(f))^{\mathrm{c}}$.
Then $A_{1}=\operatorname{RightComp}(f)$ and $A_{2}=\operatorname{Left} \operatorname{Comp}(f)$ or $A_{1}=\operatorname{LeftComp}(f)$ and $A_{2}=\operatorname{Right} \operatorname{Comp}(f)$.
(24) $\operatorname{Left} \operatorname{Comp}(f) \cap \operatorname{Right} \operatorname{Comp}(f)=\emptyset$.
(25) $\quad \widetilde{\mathcal{L}}(f) \cup \operatorname{RightComp}(f) \cup \operatorname{Left} \operatorname{Comp}(f)=$ the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$.
(26) $\quad p \in \widetilde{\mathcal{L}}(f)$ iff $p \notin \operatorname{LeftComp}(f)$ and $p \notin \operatorname{RightComp}(f)$.
(27) $\quad p \in \operatorname{Left} \operatorname{Comp}(f)$ iff $p \notin \widetilde{\mathcal{L}}(f)$ and $p \notin \operatorname{RightComp}(f)$.
(28) $\quad p \in \operatorname{RightComp}(f)$ iff $p \notin \widetilde{\mathcal{L}}(f)$ and $p \notin \operatorname{Left} \operatorname{Comp}(f)$.
(29) $\quad \widetilde{\mathcal{L}}(f)=\overline{\operatorname{Right} \operatorname{Comp}(f)} \backslash \operatorname{RightComp}(f)$.
(30) $\quad \widetilde{\mathcal{L}}(f)=\overline{\operatorname{Left} \operatorname{Comp}(f)} \backslash \operatorname{LeftComp}(f)$.
(31) $\overline{\operatorname{RightComp}(f)}=\operatorname{RightComp}(f) \cup \widetilde{\mathcal{L}}(f)$.
(32) $\overline{\operatorname{Left} \operatorname{Comp}(f)}=\operatorname{Left} \operatorname{Comp}(f) \cup \widetilde{\mathcal{L}}(f)$.

Let $f$ be a non constant standard special circular sequence. One can verify that $\widetilde{\mathcal{L}}(f)$ is Jordan.

The following propositions are true:
(33) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$ and $p \in \operatorname{RightComp}(g)$, then W-bound $\widetilde{\mathcal{L}}(g)<p_{\mathbf{1}}$.
(34) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$ and $p \in \operatorname{RightComp}(g)$, then E-bound $\widetilde{\mathcal{L}}(g)>p_{\mathbf{1}}$.
(35) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$ and $p \in \operatorname{RightComp}(g)$, then N -bound $\widetilde{\mathcal{L}}(g)>p_{\mathbf{2}}$.
(36) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$ and $p \in \operatorname{RightComp}(g)$, then S-bound $\widetilde{\mathcal{L}}(g)<p_{\mathbf{2}}$.
(37) If $p \in \operatorname{RightComp}(f)$ and $q \in \operatorname{Left} \operatorname{Comp}(f)$, then $\mathcal{L}(p, q) \cap \widetilde{\mathcal{L}}(f) \neq \emptyset$.
(38) $\overline{\operatorname{RightComp}(\operatorname{SpStSeq} C)}=\prod[1 \longmapsto[\mathrm{~W}$-bound $\widetilde{\mathcal{L}}(\operatorname{SpStSeq} C)$, E-bound $\widetilde{\mathcal{L}}(\operatorname{SpStSeq} C)], 2 \longmapsto[$ S-bound $\widetilde{\mathcal{L}}(\operatorname{SpStSeq} C)$, N-bound $\widetilde{\mathcal{L}}($ SpStSeq $C)]$.
(39) $\quad(\operatorname{proj} 1)^{\circ} \widetilde{\mathcal{L}}(f) \subseteq(\operatorname{proj} 1)^{\circ} \overline{\operatorname{RightComp}(f)}$ and if $\pi_{1} f=\mathrm{N}-\min \widetilde{\mathcal{L}}(f)$ and $f$ is clockwise oriented, then $(\operatorname{proj} 1)^{\circ} \overline{\operatorname{RightComp}(f)}=(\operatorname{proj} 1)^{\circ} \widetilde{\mathcal{L}}(f)$.
(40) $\quad(\operatorname{proj} 2)^{\circ} \widetilde{\mathcal{L}}(f) \subseteq(\operatorname{proj} 2)^{\circ} \overline{\operatorname{RightComp}(f)}$ and if $\pi_{1} f=\mathrm{N}-\min \widetilde{\mathcal{L}}(f)$ and $f$ is clockwise oriented, then $(\operatorname{proj} 2)^{\circ} \overline{\operatorname{RightComp}(f)}=(\operatorname{proj} 2)^{\circ} \widetilde{\mathcal{L}}(f)$.
(41) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$, then $\operatorname{RightComp}(g) \subseteq \operatorname{RightComp}(\operatorname{SpStSeq} \widetilde{\mathcal{L}}(g))$.
(42) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$, then $\overline{\operatorname{RightComp}(g)}$ is compact.
(43) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$, then $\operatorname{LeftComp}(g)$ is non Bounded.
(44) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$, then $\operatorname{LeftComp}(g)$ is outside component of $\widetilde{\mathcal{L}}(g)$.
(45) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$, then $\operatorname{RightComp}(g)$ is inside component of $\widetilde{\mathcal{L}}(g)$.
(46) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$, then UBD $\widetilde{\mathcal{L}}(g)=\operatorname{LeftComp}(g)$.
(47) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$, then $\operatorname{BDD} \widetilde{\mathcal{L}}(g)=\operatorname{RightComp}(g)$.
(48) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$ and $P$ is outside component of $\widetilde{\mathcal{L}}(g)$, then $P=$ $\operatorname{LeftComp}(g)$.
(49) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$ and $P$ is inside component of $\widetilde{\mathcal{L}}(g)$, then $P \cap$ $\operatorname{RightComp}(g) \neq \emptyset$.
(50) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$ and $P$ is inside component of $\widetilde{\mathcal{L}}(g)$, then $P=$ $\operatorname{BDD} \widetilde{\mathcal{L}}(g)$.
(51) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$, then W -bound $\widetilde{\mathcal{L}}(g)=\mathrm{W}$-bound $\operatorname{RightComp}(g)$.
(52) If $\pi_{1} g=\mathrm{N}$-min $\widetilde{\mathcal{L}}(g)$, then E-bound $\widetilde{\mathcal{L}}(g)=$ E-bound RightComp $(g)$.
(53) If $\pi_{1} g=\mathrm{N}-\min \widetilde{\mathcal{L}}(g)$, then N -bound $\widetilde{\mathcal{L}}(g)=\mathrm{N}$-bound $\operatorname{RightComp}(g)$.
(54) If $\pi_{1} g=\mathrm{N}$-min $\widetilde{\mathcal{L}}(g)$, then S-bound $\widetilde{\mathcal{L}}(g)=\mathrm{S}$-bound RightComp $(g)$.

## Acknowledgments

I would like to thank Professor Yatsuka Nakamura for his help in the preparation of the article.

## References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[9] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25-27, 1999.
[10] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in $\mathcal{E}^{2}$. Formalized Mathematics, 6(3):427-440, 1997.
[11] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[12] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[13] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[14] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[15] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562, 1991.
[16] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[17] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[18] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[19] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[20] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
[21] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
[22] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized Mathematics, 3(1):117-121, 1992.
[23] Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet Theorem. Formalized Mathematics, 7(2):193-201, 1998.
[24] Yatsuka Nakamura and Czesław Bylinski. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
[25] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323-328, 1996.
[26] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.
[27] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[28] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[29] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[30] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[31] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[32] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[33] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[34] Andrzej Trybulec. Left and right component of the complement of a special closed curve. Formalized Mathematics, 5(4):465-468, 1996.
[35] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[36] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized Mathematics, 6(4):541-548, 1997.
[37] Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the points of the plane. Formalized Mathematics, 6(4):531-539, 1997.
[38] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[39] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[40] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[41] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[42] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[43] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[44] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received May 5, 1999


[^0]:    ${ }^{1}$ This paper was written while the author visited Shinshu University, winter 1999.

