Propositional Calculus for Boolean Valued Functions. Part IV

Shunichi Kobayashi Shinshu University Nagano

Summary. In this paper, we have proved some elementary propositional calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC_8.

The notation and terminology used here are introduced in the following articles: [6], [7], [8], [2], [3], [5], [1], and [4].

In this paper Y denotes a non empty set.

One can prove the following propositions:

- (1) For all elements a, b, c, d of BVF(Y) holds $a \Rightarrow b \land c \land d = (a \Rightarrow b) \land (a \Rightarrow c) \land (a \Rightarrow d)$.
- (2) For all elements a, b, c, d of BVF(Y) holds $a \Rightarrow b \lor c \lor d = (a \Rightarrow b) \lor (a \Rightarrow c) \lor (a \Rightarrow d)$.
- (3) For all elements a, b, c, d of BVF(Y) holds $a \land b \land c \Rightarrow d = (a \Rightarrow d) \lor (b \Rightarrow d) \lor (c \Rightarrow d)$.
- (4) For all elements a, b, c, d of BVF(Y) holds $a \lor b \lor c \Rightarrow d = (a \Rightarrow d) \land (b \Rightarrow d) \land (c \Rightarrow d)$.
- (5) For all elements a, b, c of BVF(Y) holds $(a \Rightarrow b) \land (b \Rightarrow c) \land (c \Rightarrow a) = (a \Rightarrow b) \land (b \Rightarrow c) \land (c \Rightarrow a) \land (b \Rightarrow a) \land (a \Rightarrow c)$.
- (6) For all elements a, b of BVF(Y) holds $a = a \land b \lor a \land \neg b$.
- (7) For all elements a, b of BVF(Y) holds $a = (a \lor b) \land (a \lor \neg b)$.
- (8) For all elements a, b, c of BVF(Y) holds $a = a \land b \land c \lor a \land b \land \neg c \lor a \land \neg b \land c \lor a \land \neg b \land \neg c$.
- (9) For all elements a, b, c of BVF(Y) holds $a = (a \lor b \lor c) \land (a \lor b \lor \neg c) \land (a \lor \neg b \lor c) \land (a \lor \neg b \lor \neg c)$.

- (10) For all elements a, b of BVF(Y) holds $a \wedge b = a \wedge (\neg a \vee b)$.
- (11) For all elements a, b of BVF(Y) holds $a \lor b = a \lor \neg a \land b$.
- (12) For all elements a, b of BVF(Y) holds $a \oplus b = \neg(a \Leftrightarrow b)$.
- (13) For all elements a, b of BVF(Y) holds $a \oplus b = (a \lor b) \land (\neg a \lor \neg b)$.
- (14) For every element a of BVF(Y) holds $a \oplus true(Y) = \neg a$.
- (15) For every element a of BVF(Y) holds $a \oplus false(Y) = a$.
- (16) For all elements a, b of BVF(Y) holds $a \oplus b = \neg a \oplus \neg b$.
- (17) For all elements a, b of BVF(Y) holds $\neg(a \oplus b) = a \oplus \neg b$.
- (18) For all elements a, b of BVF(Y) holds $a \Leftrightarrow b = (a \lor \neg b) \land (\neg a \lor b)$.
- (19) For all elements a, b of BVF(Y) holds $a \Leftrightarrow b = a \land b \lor \neg a \land \neg b$.
- (20) For every element a of BVF(Y) holds $a \Leftrightarrow true(Y) = a$.
- (21) For every element a of BVF(Y) holds $a \Leftrightarrow false(Y) = \neg a$.
- (22) For all elements a, b of BVF(Y) holds $\neg(a \Leftrightarrow b) = a \Leftrightarrow \neg b$.
- (23) For all elements a, b of BVF(Y) holds $\neg a \in a \Rightarrow b \Leftrightarrow \neg a$.
- (24) For all elements a, b of BVF(Y) holds $\neg a \in b \Rightarrow a \Leftrightarrow \neg b$.
- (25) For all elements a, b of BVF(Y) holds $a \in a \lor b \Leftrightarrow b \lor a \Leftrightarrow a$.
- (26) For every element a of BVF(Y) holds $a \Rightarrow \neg a \Leftrightarrow \neg a = true(Y)$.
- (27) For all elements a, b of BVF(Y) holds $a \Rightarrow b \Rightarrow a \Rightarrow a = true(<math>Y$).
- (28) For all elements a, b, c, d of BVF(Y) holds $(a \Rightarrow c) \land (b \Rightarrow d) \land (\neg c \lor \neg d) \Rightarrow \neg a \lor \neg b = true(Y)$.
- (29) For all elements a, b, c of BVF(Y) holds $a \Rightarrow b \Rightarrow a \Rightarrow b \Rightarrow c \Rightarrow a \Rightarrow c = true(<math>Y$).

References

- [1] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990
- [4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249–254, 1998.
- [5] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [6] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [7] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737,
- [8] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received April 23, 1999