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Summary. In this paper, we have proved some elementary propositional
calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC 7.

The articles [6], [8], [9], [2], [3], [5], [1], [7], and [4] provide the terminology and

notation for this paper.

In this paper Y is a non empty set.

Next we state a number of propositions:

(1) For all elements a, b of BVF(Y ) holds (a⇒ b) ∧ (¬a⇒ b) = b.

(2) For all elements a, b of BVF(Y ) holds (a⇒ b) ∧ (a⇒ ¬b) = ¬a.

(3) For all elements a, b, c of BVF(Y ) holds a⇒ b ∨ c = (a⇒ b) ∨ (a⇒ c).

(4) For all elements a, b, c of BVF(Y ) holds a⇒ b ∧ c = (a⇒ b) ∧ (a⇒ c).

(5) For all elements a, b, c of BVF(Y ) holds a ∨ b⇒ c = (a⇒ c) ∧ (b⇒ c).

(6) For all elements a, b, c of BVF(Y ) holds a ∧ b⇒ c = (a⇒ c) ∨ (b⇒ c).

(7) For all elements a, b, c of BVF(Y ) holds a ∧ b⇒ c = a⇒ b⇒ c.

(8) For all elements a, b, c of BVF(Y ) holds a ∧ b⇒ c = a⇒ ¬b ∨ c.

(9) For all elements a, b, c of BVF(Y ) holds a⇒ b ∨ c = a ∧ ¬b⇒ c.

(10) For all elements a, b of BVF(Y ) holds a ∧ (a⇒ b) = a ∧ b.

(11) For all elements a, b of BVF(Y ) holds (a⇒ b) ∧ ¬b = ¬a ∧ ¬b.

(12) For all elements a, b, c of BVF(Y ) holds (a ⇒ b) ∧ (b ⇒ c) = (a ⇒

b) ∧ (b⇒ c) ∧ (a⇒ c).

(13) For every element a of BVF(Y ) holds true(Y )⇒ a = a.

(14) For every element a of BVF(Y ) holds a⇒ false(Y ) = ¬a.
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(15) For every element a of BVF(Y ) holds false(Y )⇒ a = true(Y ).

(16) For every element a of BVF(Y ) holds a⇒ true(Y ) = true(Y ).

(17) For every element a of BVF(Y ) holds a⇒ ¬a = ¬a.

(18) For all elements a, b, c of BVF(Y ) holds a⇒ b ⋐ c⇒ a⇒ c⇒ b.

(19) For all elements a, b, c of BVF(Y ) holds a⇔ b ⋐ a⇔ c⇔ b⇔ c.

(20) For all elements a, b, c of BVF(Y ) holds a⇔ b ⋐ a⇒ c⇔ b⇒ c.

(21) For all elements a, b, c of BVF(Y ) holds a⇔ b ⋐ c⇒ a⇔ c⇒ b.

(22) For all elements a, b, c of BVF(Y ) holds a⇔ b ⋐ a ∧ c⇔ b ∧ c.

(23) For all elements a, b, c of BVF(Y ) holds a⇔ b ⋐ a ∨ c⇔ b ∨ c.

(24) For all elements a, b of BVF(Y ) holds a ⋐ a⇔ b⇔ b⇔ a⇔ a.

(25) For all elements a, b of BVF(Y ) holds a ⋐ a⇒ b⇔ b.

(26) For all elements a, b of BVF(Y ) holds a ⋐ b⇒ a⇔ a.

(27) For all elements a, b of BVF(Y ) holds a ⋐ a ∧ b⇔ b ∧ a⇔ a.
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