Propositional Calculus for Boolean Valued Functions. Part III

Shunichi Kobayashi Shinshu University Nagano

Summary. In this paper, we have proved some elementary propositional calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC_7.

The articles [6], [8], [9], [2], [3], [5], [1], [7], and [4] provide the terminology and notation for this paper.

In this paper Y is a non empty set.

Next we state a number of propositions:

- (1) For all elements a, b of BVF(Y) holds $(a \Rightarrow b) \land (\neg a \Rightarrow b) = b$.
- (2) For all elements a, b of BVF(Y) holds $(a \Rightarrow b) \land (a \Rightarrow \neg b) = \neg a$.
- (3) For all elements a, b, c of BVF(Y) holds $a \Rightarrow b \lor c = (a \Rightarrow b) \lor (a \Rightarrow c)$.
- (4) For all elements a, b, c of BVF(Y) holds $a \Rightarrow b \land c = (a \Rightarrow b) \land (a \Rightarrow c)$.
- (5) For all elements a, b, c of BVF(Y) holds $a \lor b \Rightarrow c = (a \Rightarrow c) \land (b \Rightarrow c)$.
- (6) For all elements a, b, c of BVF(Y) holds $a \land b \Rightarrow c = (a \Rightarrow c) \lor (b \Rightarrow c)$.
- (7) For all elements a, b, c of BVF(Y) holds $a \wedge b \Rightarrow c = a \Rightarrow b \Rightarrow c$.
- (8) For all elements a, b, c of BVF(Y) holds $a \land b \Rightarrow c = a \Rightarrow \neg b \lor c$.
- (9) For all elements a, b, c of BVF(Y) holds $a \Rightarrow b \lor c = a \land \neg b \Rightarrow c$.
- (10) For all elements a, b of BVF(Y) holds $a \land (a \Rightarrow b) = a \land b$.
- (11) For all elements a, b of BVF(Y) holds $(a \Rightarrow b) \land \neg b = \neg a \land \neg b$.
- (12) For all elements a, b, c of BVF(Y) holds $(a \Rightarrow b) \land (b \Rightarrow c) = (a \Rightarrow b) \land (b \Rightarrow c) \land (a \Rightarrow c)$.
- (13) For every element a of BVF(Y) holds $true(Y) \Rightarrow a = a$.
- (14) For every element a of BVF(Y) holds $a \Rightarrow false(Y) = \neg a$.

C 1999 University of Białystok ISSN 1426-2630

SHUNICHI KOBAYASHI

- (15) For every element a of BVF(Y) holds $false(Y) \Rightarrow a = true(Y)$.
- (16) For every element a of BVF(Y) holds $a \Rightarrow true(Y) = true(Y)$.
- (17) For every element a of BVF(Y) holds $a \Rightarrow \neg a = \neg a$.
- (18) For all elements a, b, c of BVF(Y) holds $a \Rightarrow b \in c \Rightarrow a \Rightarrow c \Rightarrow b$.
- (19) For all elements a, b, c of BVF(Y) holds $a \Leftrightarrow b \Subset a \Leftrightarrow c \Leftrightarrow b \Leftrightarrow c$.
- (20) For all elements a, b, c of BVF(Y) holds $a \Leftrightarrow b \Subset a \Rightarrow c \Leftrightarrow b \Rightarrow c$.
- (21) For all elements a, b, c of BVF(Y) holds $a \Leftrightarrow b \in c \Rightarrow a \Leftrightarrow c \Rightarrow b$.
- (22) For all elements a, b, c of BVF(Y) holds $a \Leftrightarrow b \subseteq a \land c \Leftrightarrow b \land c$.
- (23) For all elements a, b, c of BVF(Y) holds $a \Leftrightarrow b \in a \lor c \Leftrightarrow b \lor c$.
- (24) For all elements a, b of BVF(Y) holds $a \in a \Leftrightarrow b \Leftrightarrow b \Leftrightarrow a \Leftrightarrow a$.
- (25) For all elements a, b of BVF(Y) holds $a \in a \Rightarrow b \Leftrightarrow b$.
- (26) For all elements a, b of BVF(Y) holds $a \in b \Rightarrow a \Leftrightarrow a$.
- (27) For all elements a, b of BVF(Y) holds $a \in a \land b \Leftrightarrow b \land a \Leftrightarrow a$.

References

- Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249–254, 1998.
- [5] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
 [7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [7] Zinalda Trybulec. Froperties of subsets. Formalized Mathematics, 1(1):0(-71, 1990.
- [8] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.
 [9] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
- [9] Edmund Woronowicz. Relations and their basic properties. *Formatized Mathematics*, 1(1):73–83, 1990.

Received April 23, 1999