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The terminology and notation used in this paper are introduced in the following

papers: [24], [19], [17], [10], [16], [7], [8], [6], [1], [18], [22], [15], [25], [23], [11],

[26], [21], [3], [14], [4], [2], [12], [13], [20], [5], and [9].

1. The Properties of Some Functions

In this paper A, B, X, Y denote sets.

Let X be an empty set. Note that
⋃

X is empty.

Next we state several propositions:

(1) (δX)◦A ⊆ [:A, A :].

(2) (δX)−1([:A, A :]) ⊆ A.

(3) For every subset A of X holds (δX)−1([:A, A :]) = A.

(4) dom〈π2(X×Y ), π1(X×Y )〉 = [:X, Y :] and rng〈π2(X×Y ), π1(X×Y )〉 =

[:Y, X :].

(5) 〈π2(X × Y ), π1(X × Y )〉◦[:A, B :] ⊆ [:B, A :].

(6) For every subset A of X and for every subset B of Y holds 〈π2(X ×

Y ), π1(X × Y )〉◦[:A, B :] = [:B, A :].

(7) 〈π2(X × Y ), π1(X × Y )〉 is one-to-one.

Let X, Y be sets. One can verify that 〈π2(X×Y ), π1(X×Y )〉 is one-to-one.

The following proposition is true

(8) 〈π2(X × Y ), π1(X × Y )〉−1 = 〈π2(Y ×X), π1(Y ×X)〉.
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2. The Properties of the Relational Structures

Next we state a number of propositions:

(9) Let L1 be a semilattice, L2 be a non empty relational structure, x, y

be elements of L1, and x1, y1 be elements of L2. Suppose the relational

structure of L1 = the relational structure of L2 and x = x1 and y = y1.

Then x ⊓ y = x1 ⊓ y1.

(10) Let L1 be a sup-semilattice, L2 be a non empty relational structure, x,

y be elements of L1, and x1, y1 be elements of L2. Suppose the relational

structure of L1 = the relational structure of L2 and x = x1 and y = y1.

Then x ⊔ y = x1 ⊔ y1.

(11) Let L1 be a semilattice, L2 be a non empty relational structure, X, Y

be subsets of L1, and X1, Y1 be subsets of L2. Suppose the relational

structure of L1 = the relational structure of L2 and X = X1 and Y = Y1.

Then X ⊓ Y = X1 ⊓ Y1.

(12) Let L1 be a sup-semilattice, L2 be a non empty relational structure, X,

Y be subsets of L1, and X1, Y1 be subsets of L2. Suppose the relational

structure of L1 = the relational structure of L2 and X = X1 and Y = Y1.

Then X ⊔ Y = X1 ⊔ Y1.

(13) Let L1 be an antisymmetric up-complete non empty reflexive relational

structure, L2 be a non empty reflexive relational structure, x be an element

of L1, and y be an element of L2. Suppose the relational structure of

L1 = the relational structure of L2 and x = y. Then ↓↓x = ↓↓y and ↑↑x = ↑↑y.

(14) Let L1 be a meet-continuous semilattice and L2 be a non empty reflexive

relational structure. Suppose the relational structure of L1 = the relational

structure of L2. Then L2 is meet-continuous.

(15) Let L1 be a continuous antisymmetric non empty reflexive relational

structure and L2 be a non empty reflexive relational structure. Suppose

the relational structure of L1 = the relational structure of L2. Then L2 is

continuous.

(16) Let L1, L2 be relational structures, A be a subset of L1, and J be a subset

of L2. Suppose the relational structure of L1 = the relational structure of

L2 and A = J. Then sub(A) = sub(J).

(17) Let L1, L2 be non empty relational structures, A be a relational sub-

structure of L1, and J be a relational substructure of L2. Suppose that

(i) the relational structure of L1 = the relational structure of L2,

(ii) the relational structure of A = the relational structure of J , and

(iii) A is meet-inheriting.

Then J is meet-inheriting.
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(18) Let L1, L2 be non empty relational structures, A be a relational sub-

structure of L1, and J be a relational substructure of L2. Suppose that

(i) the relational structure of L1 = the relational structure of L2,

(ii) the relational structure of A = the relational structure of J , and

(iii) A is join-inheriting.

Then J is join-inheriting.

(19) Let L1 be an up-complete antisymmetric non empty reflexive relational

structure, L2 be a non empty reflexive relational structure, X be a subset

of L1, and Y be a subset of L2 such that the relational structure of L1 = the

relational structure of L2 and X = Y and X has the property (S). Then

Y has the property (S).

(20) Let L1 be an up-complete antisymmetric non empty reflexive relational

structure, L2 be a non empty reflexive relational structure, X be a subset

of L1, and Y be a subset of L2. Suppose the relational structure of L1 = the

relational structure of L2 and X = Y and X is directly closed. Then Y is

directly closed.

(21) Let N be an antisymmetric relational structure with g.l.b.’s, D, E be

subsets of N , and X be an upper subset of N . If D ∩X = ∅, then (D ⊓

E) ∩X = ∅.

(22) Let R be a reflexive non empty relational structure. Then

△the carrier of R ⊆ (the internal relation of R) ∩ (the internal relation of

R`).

(23) Let R be an antisymmetric relational structure. Then (the internal rela-

tion of R) ∩ (the internal relation of R`) ⊆ △the carrier of R.

(24) Let R be an upper-bounded semilattice and X be a subset of [:R, R :].

If inf (⊓R)◦X exists in R, then ⊓R preserves inf of X.

Let R be a complete semilattice. One can verify that ⊓R is infs-preserving.

Next we state the proposition

(25) Let R be a lower-bounded sup-semilattice and X be a subset of [:R, R :].

If sup (⊔R)◦X exists in R, then ⊔R preserves sup of X.

Let R be a complete sup-semilattice. Note that ⊔R is sups-preserving.

One can prove the following propositions:

(26) For every semilattice N and for every subset A of N such that sub(A)

is meet-inheriting holds A is filtered.

(27) For every sup-semilatticeN and for every subset A ofN such that sub(A)

is join-inheriting holds A is directed.

(28) Let N be a transitive relational structure and A, J be subsets of N . If

A is coarser than ↑J, then ↑A ⊆ ↑J.

(29) For every transitive relational structure N and for all subsets A, J of N

such that A is finer than ↓J holds ↓A ⊆ ↓J.
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(30) Let N be a non empty reflexive relational structure, x be an element of

N , and X be a subset of N . If x ∈ X, then ↑x ⊆ ↑X.

(31) Let N be a non empty reflexive relational structure, x be an element of

N , and X be a subset of N . If x ∈ X, then ↓x ⊆ ↓X.

3. On the Hausdorff Spaces

In the sequel R, S, T denote non empty topological spaces.

Let T be a non empty topological structure. One can verify that the topo-

logical structure of T is non empty.

Let T be a topological space. Observe that the topological structure of T is

topological space-like.

Next we state three propositions:

(32) Let S, T be topological structures and B be a basis of S. Suppose the

topological structure of S = the topological structure of T . Then B is a

basis of T .

(33) Let S, T be topological structures and B be a prebasis of S. Suppose

the topological structure of S = the topological structure of T . Then B is

a prebasis of T .

(34) Every basis of T is non empty.

Let T be a non empty topological space. Note that every basis of T is non

empty.

The following proposition is true

(35) For every point x of T holds every basis of x is non empty.

Let T be a non empty topological space and let x be a point of T . One can

check that every basis of x is non empty.

Next we state a number of propositions:

(36) Let S1, T1, S2, T2 be non empty topological spaces, f be a map from S1

into S2, and g be a map from T1 into T2. Suppose that

(i) the topological structure of S1 = the topological structure of T1,

(ii) the topological structure of S2 = the topological structure of T2,

(iii) f = g, and

(iv) f is continuous.

Then g is continuous.

(37) △the carrier of T = {p; p ranges over points of [:T, T :]: π1((the carrier of

T )× the carrier of T )(p) = π2((the carrier of T )× the carrier of T )(p)}.

(38) δthe carrier of T is a continuous map from T into [:T, T :].

(39) π1((the carrier of S) × the carrier of T ) is a continuous map from [:S,

T :] into S.



on the characterization of hausdorff spaces 67

(40) π2((the carrier of S) × the carrier of T ) is a continuous map from [:S,

T :] into T .

(41) Let f be a continuous map from T into S and g be a continuous map

from T into R. Then 〈f, g〉 is a continuous map from T into [:S, R :].

(42) 〈π2((the carrier of S)×the carrier of T ), π1((the carrier of S)×the carrier

of T )〉 is a continuous map from [:S, T :] into [:T, S :].

(43) Let f be a map from [:S, T :] into [:T, S :]. Suppose f = 〈π2((the carrier

of S)× the carrier of T ), π1((the carrier of S)× the carrier of T )〉. Then f

is a homeomorphism.

(44) [:S, T :] and [:T, S :] are homeomorphic.

(45) Let T be a Hausdorff non empty topological space and f , g be continuous

maps from S into T . Then

(i) for every subset X of S such that X = {p; p ranges over points of S:

f(p) 6= g(p)} holds X is open, and

(ii) for every subset X of S such that X = {p; p ranges over points of S:

f(p) = g(p)} holds X is closed.

(46) T is Hausdorff iff for every subset A of [:T, T :] such that A =

△the carrier of T holds A is closed.

Let S, T be topological structures. Note that there exists a refinement of S

and T which is strict.

Let S be a non empty topological structure and let T be a topological struc-

ture. Observe that there exists a refinement of S and T which is strict and non

empty and there exists a refinement of T and S which is strict and non empty.

We now state the proposition

(47) Let R, S, T be topological structures. Then R is a refinement of S and

T if and only if the topological structure of R is a refinement of S and T .

For simplicity, we adopt the following convention: S1, S2, T1, T2 are non

empty topological spaces, R is a refinement of [:S1, T1 :] and [:S2, T2 :], R1 is a

refinement of S1 and S2, and R2 is a refinement of T1 and T2.

The following three propositions are true:

(48) Suppose the carrier of S1 = the carrier of S2 and the carrier of T1 = the

carrier of T2. Then {[:U1, V1 :] ∩ [:U2, V2 :];U1 ranges over subsets of S1,

U2 ranges over subsets of S2, V1 ranges over subsets of T1, V2 ranges over

subsets of T2: U1 is open ∧ U2 is open ∧ V1 is open ∧ V2 is open} is a basis

of R.

(49) Suppose the carrier of S1 = the carrier of S2 and the carrier of T1 = the

carrier of T2. Then the carrier of [:R1, R2 :] = the carrier of R and the

topology of [:R1, R2 :] = the topology of R.

(50) Suppose the carrier of S1 = the carrier of S2 and the carrier of T1 = the

carrier of T2. Then [:R1, R2 :] is a refinement of [:S1, T1 :] and [:S2, T2 :].
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