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The terminology and notation used in this paper are introduced in the following
papers: [24], [19], [17], [10], [16], [7], [8], [6], [1], [18], [22], [15], [25], [23], [11],
[26], [21], [3], [14], 4], [2], [12], [13], [20], [5], and [9].

1. THE PROPERTIES OF SOME FUNCTIONS

In this paper A, B, X, Y denote sets.
Let X be an empty set. Note that J X is empty.
Next we state several propositions:

(1) (6x)°ACEA, A}
(2) (0x)7'(F4, A C A
(3) For every subset A of X holds (0x)71(fA, A]) = A.
(4) dom(me(X xY),m(XxY))=[X, Y]and rng(m(X xY), m (X xY)) =
v, X
(5) (m(X xY),m(X xY))°lA, B{C[B, A].
(6) For every subset A of X and for every subset B of Y holds (ma(X x
V), m(X xY))°lA B]=[B, Al.
(7) (m(X xY),m1(X xY)) is one-to-one.
Let X, Y be sets. One can verify that (ma(X xY), 7 (X xY)) is one-to-one.
The following proposition is true

(8) (ma(X x V), m(X x V)~ = (m(Y x X), (Y x X)).
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2. THE PROPERTIES OF THE RELATIONAL STRUCTURES

Next we state a number of propositions:

(9) Let L; be a semilattice, Ly be a non empty relational structure, =, y
be elements of Ly, and x1, y; be elements of Ls. Suppose the relational
structure of L; = the relational structure of Lo and x = z1 and y = y;.
Then x My =z My;.

(10) Let Lj be a sup-semilattice, Ly be a non empty relational structure, z,
y be elements of L1, and z1, y; be elements of Ly. Suppose the relational
structure of L1 = the relational structure of Ly and x = 1 and y = y;.
Then z Uy = 21 Uy;.

(11) Let Ly be a semilattice, Ly be a non empty relational structure, X, Y
be subsets of L1, and Xj, Y7 be subsets of Ly. Suppose the relational
structure of L1 = the relational structure of Ly and X = X; and Y = Y;.
Then XNMY = X;MY;.

(12) Let L; be a sup-semilattice, Ly be a non empty relational structure, X,
Y be subsets of L1, and X1, Y7 be subsets of Ls. Suppose the relational
structure of L1 = the relational structure of Ly and X = X; and Y = Y7.
Then X UY = X7 UY7.

(13) Let Lj be an antisymmetric up-complete non empty reflexive relational
structure, Lo be a non empty reflexive relational structure, x be an element
of L1, and y be an element of Ls. Suppose the relational structure of
L1 = the relational structure of Ly and # = y. Then |z = |y and Tz =1y.

(14) Let L; be a meet-continuous semilattice and Ls be a non empty reflexive
relational structure. Suppose the relational structure of L; = the relational
structure of Lo. Then Lo is meet-continuous.

(15) Let Lp be a continuous antisymmetric non empty reflexive relational
structure and Lo be a non empty reflexive relational structure. Suppose
the relational structure of L; = the relational structure of Ly. Then Lo is
continuous.

(16) Let Ly, Lo be relational structures, A be a subset of L, and J be a subset
of Ly. Suppose the relational structure of L; = the relational structure of
Ly and A = J. Then sub(A) = sub(J).

(17) Let Li, Lo be non empty relational structures, A be a relational sub-
structure of L1, and J be a relational substructure of Lo. Suppose that

(i)  the relational structure of L; = the relational structure of Lo,
(ii)  the relational structure of A = the relational structure of J, and
(iii) A is meet-inheriting.

Then J is meet-inheriting.
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(18) Let Lj, Ly be non empty relational structures, A be a relational sub-
structure of L1, and J be a relational substructure of Lo. Suppose that
(i)  the relational structure of L; = the relational structure of Lo,
(ii)  the relational structure of A = the relational structure of J, and
(iii) A is join-inheriting.
Then J is join-inheriting.

(19) Let L; be an up-complete antisymmetric non empty reflexive relational
structure, Lo be a non empty reflexive relational structure, X be a subset
of L1, and Y be a subset of Ly such that the relational structure of L1 = the
relational structure of Ly and X =Y and X has the property (S). Then
Y has the property (S).

(20) Let L; be an up-complete antisymmetric non empty reflexive relational
structure, Lo be a non empty reflexive relational structure, X be a subset
of L1, and Y be a subset of Ly. Suppose the relational structure of L; = the
relational structure of Lo and X =Y and X is directly closed. Then Y is
directly closed.

(21) Let N be an antisymmetric relational structure with g.l.b.’s, D, E be
subsets of N, and X be an upper subset of N. If DN X = (), then (D N
EynX =0.

(22) Let R be a reflexive non empty relational structure. Then
Athe carrier of R C (the internal relation of R) N (the internal relation of
R>).

(23) Let R be an antisymmetric relational structure. Then (the internal rela-
tion of R) N (the internal relation of R™) C Athe carrier of R-

(24) Let R be an upper-bounded semilattice and X be a subset of [ R, R .
If inf (MpR)°X exists in R, then Mg preserves inf of X.

Let R be a complete semilattice. One can verify that Mg is infs-preserving.
Next we state the proposition
(25) Let R be a lower-bounded sup-semilattice and X be a subset of [ R, R .
If sup (Ug)°X exists in R, then Ug preserves sup of X.
Let R be a complete sup-semilattice. Note that Lig is sups-preserving.
One can prove the following propositions:
(26) For every semilattice N and for every subset A of N such that sub(A)
is meet-inheriting holds A is filtered.
(27) For every sup-semilattice N and for every subset A of N such that sub(A)
is join-inheriting holds A is directed.
(28) Let N be a transitive relational structure and A, J be subsets of N. If
A is coarser than 7.J, then TA C 7J.

(29) For every transitive relational structure N and for all subsets A, J of N
such that A is finer than |J holds |A C | J.
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(30) Let N be a non empty reflexive relational structure, z be an element of
N, and X be a subset of N. If x € X, then Tz C 7X.

(31) Let N be a non empty reflexive relational structure, z be an element of
N, and X be a subset of N. If x € X, then |z C | X.

3. ON THE HAUSDORFF SPACES

In the sequel R, S, T denote non empty topological spaces.
Let T be a non empty topological structure. One can verify that the topo-
logical structure of T'is non empty.
Let T be a topological space. Observe that the topological structure of T is
topological space-like.
Next we state three propositions:
(32) Let S, T be topological structures and B be a basis of S. Suppose the
topological structure of S = the topological structure of 7. Then B is a
basis of T'.
(33) Let S, T be topological structures and B be a prebasis of S. Suppose
the topological structure of S = the topological structure of T'. Then B is
a prebasis of T.
(34) Every basis of T' is non empty.
Let T be a non empty topological space. Note that every basis of 7" is non
empty.
The following proposition is true
(35) For every point x of T holds every basis of z is non empty.
Let T be a non empty topological space and let  be a point of 7. One can
check that every basis of x is non empty.
Next we state a number of propositions:
(36) Let Sy, Th, S2, T» be non empty topological spaces, f be a map from S}
into S5, and g be a map from 7} into T5. Suppose that
(i)  the topological structure of S; = the topological structure of 77,
(ii)  the topological structure of Sy = the topological structure of T3,
)  f=g,and
) f is continuous.

(i

(iv
Then g is continuous.

(37)  Athe carrier of 7 = {p;p ranges over points of [T, T ]: m1((the carrier of
T) X the carrier of T')(p) = m2((the carrier of T') x the carrier of T')(p)}.

(38)  Othe carrier of T 18 a continuous map from 7T into [T, T'].

(39) m1((the carrier of S) x the carrier of T' ) is a continuous map from |[ S,
T into S.
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(40) m2((the carrier of S) x the carrier of T' ) is a continuous map from [ S,
T into T

(41) Let f be a continuous map from 7T into S and g be a continuous map
from T into R. Then (f,g) is a continuous map from 7 into [ S, R].

(42)  (m2((the carrier of S) x the carrier of T'), 71 ((the carrier of S) x the carrier
of T')) is a continuous map from [ S, T'] into [ T, S {.

(43) Let f be a map from [ S, T'{ into [T, S ]. Suppose f = (ma((the carrier
of S) x the carrier of T), 71 ((the carrier of S) x the carrier of T')). Then f
is a homeomorphism.

(44) [S,T] and [T, S] are homeomorphic.

(45) Let T be a Hausdorff non empty topological space and f, g be continuous
maps from .S into 7. Then

(i)  for every subset X of S such that X = {p;p ranges over points of S:
f(p) # g(p)} holds X is open, and

(ii)  for every subset X of S such that X = {p;p ranges over points of S:
f(p) = g(p)} holds X is closed.

(46) T is Hausdorff iff for every subset A of [T, T] such that A =
Athe carrier of T holds A is closed.

Let S, T be topological structures. Note that there exists a refinement of .S
and T which is strict.

Let S be a non empty topological structure and let T" be a topological struc-
ture. Observe that there exists a refinement of S and 1" which is strict and non
empty and there exists a refinement of T' and .S which is strict and non empty.

We now state the proposition

(47) Let R, S, T be topological structures. Then R is a refinement of S and
T if and only if the topological structure of R is a refinement of S and T'.

For simplicity, we adopt the following convention: Sy, So, T, T5 are non
empty topological spaces, R is a refinement of [ Sy, 71 ] and [ Sy, T2 ], Ry is a
refinement of S and S5, and Rs is a refinement of 77 and T5.

The following three propositions are true:

(48) Suppose the carrier of S; = the carrier of So and the carrier of T} = the
carrier of Ty. Then {[ Uy, V1] N [ Uz, V5 ];U; ranges over subsets of Si,
U, ranges over subsets of Sa, V] ranges over subsets of 77, V5 ranges over
subsets of Ty: Uy is open A Us is open A Vj is open A V3 is open} is a basis

of R.
(49) Suppose the carrier of S; = the carrier of So and the carrier of 77 = the
carrier of Ty. Then the carrier of | Ry, Ry] = the carrier of R and the

topology of [ Ry, Rs ] = the topology of R.
(50) Suppose the carrier of S; = the carrier of So and the carrier of 77 = the
carrier of T. Then [ Ry, Ro] is a refinement of [ .S1, T1 ] and [ Sz, T» .
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