On the Characterization of Hausdorff Spaces¹

Artur Korniłowicz University of Białystok

MML Identifier: YELLOW12.

The terminology and notation used in this paper are introduced in the following papers: [24], [19], [17], [10], [16], [7], [8], [6], [1], [18], [22], [15], [25], [23], [11], [26], [21], [3], [14], [4], [2], [12], [13], [20], [5], and [9].

1. The Properties of Some Functions

In this paper A, B, X, Y denote sets.

Let X be an empty set. Note that $\bigcup X$ is empty.

Next we state several propositions:

- (1) $(\delta_X)^{\circ} A \subseteq [A, A].$
- (2) $(\delta_X)^{-1}([A, A]) \subseteq A$.
- (3) For every subset A of X holds $(\delta_X)^{-1}([A, A]) = A$.
- (4) $\operatorname{dom}\langle \pi_2(X \times Y), \pi_1(X \times Y) \rangle = [X, Y] \text{ and } \operatorname{rng}\langle \pi_2(X \times Y), \pi_1(X \times Y) \rangle = [Y, X].$
- (5) $\langle \pi_2(X \times Y), \pi_1(X \times Y) \rangle^{\circ} [A, B] \subseteq [B, A].$
- (6) For every subset A of X and for every subset B of Y holds $\langle \pi_2(X \times Y), \pi_1(X \times Y) \rangle^{\circ} [A, B] = [B, A].$
- (7) $\langle \pi_2(X \times Y), \pi_1(X \times Y) \rangle$ is one-to-one.

Let X, Y be sets. One can verify that $\langle \pi_2(X \times Y), \pi_1(X \times Y) \rangle$ is one-to-one. The following proposition is true

(8) $\langle \pi_2(X \times Y), \pi_1(X \times Y) \rangle^{-1} = \langle \pi_2(Y \times X), \pi_1(Y \times X) \rangle.$

¹This work has been supported by KBN Grant 8 T11C 018 12.

2. The Properties of the Relational Structures

Next we state a number of propositions:

- (9) Let L_1 be a semilattice, L_2 be a non empty relational structure, x, y be elements of L_1 , and x_1 , y_1 be elements of L_2 . Suppose the relational structure of L_1 = the relational structure of L_2 and $x = x_1$ and $y = y_1$. Then $x \sqcap y = x_1 \sqcap y_1$.
- (10) Let L_1 be a sup-semilattice, L_2 be a non empty relational structure, x, y be elements of L_1 , and x_1 , y_1 be elements of L_2 . Suppose the relational structure of L_1 = the relational structure of L_2 and $x = x_1$ and $y = y_1$. Then $x \sqcup y = x_1 \sqcup y_1$.
- (11) Let L_1 be a semilattice, L_2 be a non empty relational structure, X, Y be subsets of L_1 , and X_1 , Y_1 be subsets of L_2 . Suppose the relational structure of L_1 = the relational structure of L_2 and $X = X_1$ and $Y = Y_1$. Then $X \sqcap Y = X_1 \sqcap Y_1$.
- (12) Let L_1 be a sup-semilattice, L_2 be a non empty relational structure, X, Y be subsets of L_1 , and X_1 , Y_1 be subsets of L_2 . Suppose the relational structure of L_1 = the relational structure of L_2 and $X = X_1$ and $Y = Y_1$. Then $X \sqcup Y = X_1 \sqcup Y_1$.
- (13) Let L_1 be an antisymmetric up-complete non empty reflexive relational structure, L_2 be a non empty reflexive relational structure, x be an element of L_1 , and y be an element of L_2 . Suppose the relational structure of L_1 = the relational structure of L_2 and x = y. Then $\downarrow x = \downarrow y$ and $\uparrow x = \uparrow y$.
- (14) Let L_1 be a meet-continuous semilattice and L_2 be a non empty reflexive relational structure. Suppose the relational structure of L_1 = the relational structure of L_2 . Then L_2 is meet-continuous.
- (15) Let L_1 be a continuous antisymmetric non empty reflexive relational structure and L_2 be a non empty reflexive relational structure. Suppose the relational structure of L_1 = the relational structure of L_2 . Then L_2 is continuous.
- (16) Let L_1 , L_2 be relational structures, A be a subset of L_1 , and J be a subset of L_2 . Suppose the relational structure of L_1 = the relational structure of L_2 and A = J. Then sub(A) = sub(J).
- (17) Let L_1 , L_2 be non empty relational structures, A be a relational substructure of L_1 , and J be a relational substructure of L_2 . Suppose that
 - (i) the relational structure of L_1 = the relational structure of L_2 ,
 - (ii) the relational structure of A = the relational structure of J, and
- (iii) A is meet-inheriting. Then J is meet-inheriting.

- (18) Let L_1 , L_2 be non empty relational structures, A be a relational substructure of L_1 , and J be a relational substructure of L_2 . Suppose that
 - (i) the relational structure of L_1 = the relational structure of L_2 ,
 - (ii) the relational structure of A = the relational structure of J, and
- (iii) A is join-inheriting. Then J is join-inheriting.
- (19) Let L_1 be an up-complete antisymmetric non empty reflexive relational structure, L_2 be a non empty reflexive relational structure, X be a subset of L_1 , and Y be a subset of L_2 such that the relational structure of L_1 = the relational structure of L_2 and X = Y and X has the property (S). Then Y has the property (S).
- (20) Let L_1 be an up-complete antisymmetric non empty reflexive relational structure, L_2 be a non empty reflexive relational structure, X be a subset of L_1 , and Y be a subset of L_2 . Suppose the relational structure of L_1 = the relational structure of L_2 and X = Y and X is directly closed. Then Y is directly closed.
- (21) Let N be an antisymmetric relational structure with g.l.b.'s, D, E be subsets of N, and X be an upper subset of N. If $D \cap X = \emptyset$, then $(D \cap E) \cap X = \emptyset$.
- (22) Let R be a reflexive non empty relational structure. Then $\triangle_{\text{the carrier of }R} \subseteq \text{(the internal relation of }R) \cap \text{(the internal relation of }R)$.
- (23) Let R be an antisymmetric relational structure. Then (the internal relation of R) \cap (the internal relation of R) $\subseteq \triangle_{\text{the carrier of }R}$.
- (24) Let R be an upper-bounded semilattice and X be a subset of [R, R]. If inf $(\sqcap_R)^{\circ}X$ exists in R, then \sqcap_R preserves inf of X.
 - Let R be a complete semilattice. One can verify that \sqcap_R is infs-preserving. Next we state the proposition
- (25) Let R be a lower-bounded sup-semilattice and X be a subset of [R, R]. If $\sup (\sqcup_R)^{\circ}X$ exists in R, then \sqcup_R preserves \sup of X.
 - Let R be a complete sup-semilattice. Note that \sqcup_R is sups-preserving. One can prove the following propositions:
- (26) For every semilattice N and for every subset A of N such that sub(A) is meet-inheriting holds A is filtered.
- (27) For every sup-semilattice N and for every subset A of N such that sub(A) is join-inheriting holds A is directed.
- (28) Let N be a transitive relational structure and A, J be subsets of N. If A is coarser than $\uparrow J$, then $\uparrow A \subseteq \uparrow J$.
- (29) For every transitive relational structure N and for all subsets A, J of N such that A is finer than $\downarrow J$ holds $\downarrow A \subseteq \downarrow J$.

- (30) Let N be a non empty reflexive relational structure, x be an element of N, and X be a subset of N. If $x \in X$, then $\uparrow x \subseteq \uparrow X$.
- (31) Let N be a non empty reflexive relational structure, x be an element of N, and X be a subset of N. If $x \in X$, then $\downarrow x \subseteq \downarrow X$.

3. On the Hausdorff Spaces

In the sequel R, S, T denote non empty topological spaces.

Let T be a non empty topological structure. One can verify that the topological structure of T is non empty.

Let T be a topological space. Observe that the topological structure of T is topological space-like.

Next we state three propositions:

- (32) Let S, T be topological structures and B be a basis of S. Suppose the topological structure of S = the topological structure of T. Then B is a basis of T.
- (33) Let S, T be topological structures and B be a prebasis of S. Suppose the topological structure of S = the topological structure of T. Then B is a prebasis of T.
- (34) Every basis of T is non empty.

Let T be a non empty topological space. Note that every basis of T is non empty.

The following proposition is true

(35) For every point x of T holds every basis of x is non empty.

Let T be a non empty topological space and let x be a point of T. One can check that every basis of x is non empty.

Next we state a number of propositions:

- (36) Let S_1 , T_1 , S_2 , T_2 be non empty topological spaces, f be a map from S_1 into S_2 , and g be a map from T_1 into T_2 . Suppose that
 - (i) the topological structure of S_1 = the topological structure of T_1 ,
 - (ii) the topological structure of S_2 = the topological structure of T_2 ,
- (iii) f = g, and
- (iv) f is continuous.

Then g is continuous.

- (37) $\triangle_{\text{the carrier of }T} = \{p; p \text{ ranges over points of } [T, T]: \pi_1((\text{the carrier of }T) \times \text{the carrier of }T)(p) = \pi_2((\text{the carrier of }T) \times \text{the carrier of }T)(p)\}.$
- (38) $\delta_{\text{the carrier of }T}$ is a continuous map from T into [T, T].
- (39) π_1 ((the carrier of S) × the carrier of T) is a continuous map from [S, T]; into S.

- (40) π_2 ((the carrier of S) × the carrier of T) is a continuous map from [S, T]; into T.
- (41) Let f be a continuous map from T into S and g be a continuous map from T into R. Then $\langle f, g \rangle$ is a continuous map from T into [S, R].
- (42) $\langle \pi_2(\text{the carrier of } S) \times \text{the carrier of } T), \pi_1(\text{the carrier of } S) \times \text{the carrier of } T) \rangle$ is a continuous map from [S, T] into [T, S].
- (43) Let f be a map from [S, T] into [T, S]. Suppose $f = \langle \pi_2((\text{the carrier of } S) \times \text{the carrier of } T), \pi_1((\text{the carrier of } S) \times \text{the carrier of } T) \rangle$. Then f is a homeomorphism.
- (44) [S, T] and [T, S] are homeomorphic.
- (45) Let T be a Hausdorff non empty topological space and f, g be continuous maps from S into T. Then
 - (i) for every subset X of S such that $X = \{p; p \text{ ranges over points of } S: f(p) \neq g(p)\}$ holds X is open, and
 - (ii) for every subset X of S such that $X = \{p; p \text{ ranges over points of } S: f(p) = g(p)\}$ holds X is closed.
- (46) T is Hausdorff iff for every subset A of [T, T] such that $A = \triangle_{\text{the carrier of } T}$ holds A is closed.
- Let S, T be topological structures. Note that there exists a refinement of S and T which is strict.

Let S be a non empty topological structure and let T be a topological structure. Observe that there exists a refinement of S and T which is strict and non empty and there exists a refinement of T and S which is strict and non empty.

We now state the proposition

(47) Let R, S, T be topological structures. Then R is a refinement of S and T if and only if the topological structure of R is a refinement of S and T.

For simplicity, we adopt the following convention: S_1 , S_2 , T_1 , T_2 are non empty topological spaces, R is a refinement of $[S_1, T_1]$ and $[S_2, T_2]$, R_1 is a refinement of S_1 and S_2 , and S_2 is a refinement of T_1 and T_2 .

The following three propositions are true:

- (48) Suppose the carrier of S_1 = the carrier of S_2 and the carrier of T_1 = the carrier of T_2 . Then $\{[U_1, V_1] \cap [U_2, V_2]; U_1 \text{ ranges over subsets of } S_1, U_2 \text{ ranges over subsets of } S_2, V_1 \text{ ranges over subsets of } T_1, V_2 \text{ ranges over subsets of } T_2$: U_1 is open $\wedge U_2$ is open $\wedge V_1$ is open $\wedge V_2$ is open
- (49) Suppose the carrier of S_1 = the carrier of S_2 and the carrier of T_1 = the carrier of T_2 . Then the carrier of $[R_1, R_2]$ = the carrier of R and the topology of $[R_1, R_2]$ = the topology of R.
- (50) Suppose the carrier of S_1 = the carrier of S_2 and the carrier of T_1 = the carrier of T_2 . Then $[R_1, R_2]$ is a refinement of $[S_1, T_1]$ and $[S_2, T_2]$.

References

- [1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
- [2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathematics, 6(1):81–91, 1997.
- [3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93–107, 1997.
- [4] Grzegorz Bancerek. The "way-below" relation. Formalized Mathematics, 6(1):169–176, 1997.
- [5] Grzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics, 7(1):35–43, 1998.
- [6] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [10] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [11] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [12] Artur Korniłowicz. Cartesian products of relations and relational structures. Formalized Mathematics, 6(1):145–152, 1997.
- [13] Artur Korniłowicz. Definitions and properties of the join and meet of subsets. Formalized Mathematics, 6(1):153–158, 1997.
- [14] Artur Korniłowicz. Meet-continuous lattices. Formalized Mathematics, 6(1):159–167,
- 1997. [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
- Formalized Mathematics, 1(1):223–230, 1990.

 [16] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction.
- Formalized Mathematics, 1(3):441–444, 1990.
 [17] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics,
- 5(2):233–236, 1996.
 [18] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
- 1(1):97–105, 1990.
 [19] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,
- 2(4):535–545, 1991.
 [20] Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289–294,
- [21] Andrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311–319, 1997.
- [22] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319, 1990.
- [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [24] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [26] Mariusz Żynel and Adam Guzowski. T_0 topological spaces. Formalized Mathematics, 5(1):75-77, 1996.

Received April 18, 1998