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The notation and terminology used in this paper have been introduced in the

following articles: [20], [16], [13], [1], [14], [7], [6], [5], [17], [10], [11], [12], [19],

[15], [8], [22], [18], [2], [3], [9], [21], and [4].

1. Product Topologies

The following propositions are true:

(1) Let x, y, z, Z be sets. Then Z ⊆ {x, y, z} if and only if one of the

following conditions is satisfied:

(i) Z = ∅, or

(ii) Z = {x}, or

(iii) Z = {y}, or

(iv) Z = {z}, or

(v) Z = {x, y}, or

(vi) Z = {y, z}, or

(vii) Z = {x, z}, or

(viii) Z = {x, y, z}.

(2) For every set X and for all families A, B of subsets of X such that

B = A \ {∅} or A = B ∪ {∅} holds UniCl(A) = UniCl(B).

(3) Let T be a topological space and K be a family of subsets of T . Then

K is a basis of T if and only if K \ {∅} is a basis of T .

Let F be a binary relation. We say that F is topological space yielding if

and only if:
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(Def. 1) For every set x such that x ∈ rngF holds x is a topological space.

One can verify that every function which is topological space yielding is also

1-sorted yielding.

Let I be a set. Note that there exists a many sorted set indexed by I which

is topological space yielding.

Let I be a set. One can check that there exists a many sorted set indexed

by I which is topological space yielding and nonempty.

Let J be a non empty set, let A be a topological space yielding many sorted

set indexed by J , and let j be an element of J . Then A(j) is a topological space.

Let I be a set and let J be a topological space yielding many sorted set

indexed by I. The product prebasis for J is a family of subsets of
∏
(the support

of J) and is defined by the condition (Def. 2).

(Def. 2) Let x be a subset of
∏
(the support of J). Then x ∈ the product prebasis

for J if and only if there exists a set i and there exists a topological space

T and there exists a subset V of T such that i ∈ I and V is open and

T = J(i) and x =
∏

((the support of J) +· (i, V )).

Next we state the proposition

(4) For every set X and for every family A of subsets of X holds 〈X,

UniCl(FinMeetCl(A))〉 is topological space-like.

Let I be a set and let J be a topological space yielding nonempty many

sorted set indexed by I. The functor
∏

J yielding a strict topological space is

defined by:

(Def. 3) The carrier of
∏

J =
∏
(the support of J) and the product prebasis for

J is a prebasis of
∏

J.

Let I be a set and let J be a topological space yielding nonempty many

sorted set indexed by I. One can check that
∏

J is non empty.

Let I be a non empty set, let J be a topological space yielding nonempty

many sorted set indexed by I, and let i be an element of I. Then J(i) is a non

empty topological space.

Let I be a set and let J be a topological space yielding nonempty many

sorted set indexed by I. Observe that every element of the carrier of
∏

J is

function-like and relation-like.

Let I be a non empty set, let J be a topological space yielding nonempty

many sorted set indexed by I, let x be an element of the carrier of
∏

J, and let

i be an element of I. Then x(i) is an element of J(i).

Let I be a non empty set, let J be a topological space yielding nonempty

many sorted set indexed by I, and let i be an element of I. The functor proj(J, i)

yielding a map from
∏

J into J(i) is defined as follows:

(Def. 4) proj(J, i) = proj(the support of J , i).

One can prove the following propositions:
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(5) Let I be a non empty set, J be a topological space yielding nonempty

many sorted set indexed by I, i be an element of I, and P be a subset of the

carrier of J(i). Then (proj(J, i))−1(P ) =
∏

((the support of J) +· (i, P )).

(6) Let I be a non empty set, J be a topological space yielding nonempty

many sorted set indexed by I, and i be an element of I. Then proj(J, i) is

continuous.

(7) Let X be a non empty topological space, I be a non empty set, J be a

topological space yielding nonempty many sorted set indexed by I, and f

be a map from X into
∏

J. Then f is continuous if and only if for every

element i of I holds proj(J, i) · f is continuous.

2. Injective Spaces

Let Z be a topological structure. We say that Z is injective if and only if

the condition (Def. 5) is satisfied.

(Def. 5) Let X be a non empty topological space and f be a map from X into Z.

Suppose f is continuous. Let Y be a non empty topological space. Suppose

X is a subspace of Y . Then there exists a map g from Y into Z such that

g is continuous and g↾the carrier of X = f.

One can prove the following two propositions:

(8) Let I be a non empty set and J be a topological space yielding nonempty

many sorted set indexed by I. If for every element i of I holds J(i) is

injective, then
∏

J is injective.

(9) Let T be a non empty topological space. Suppose T is injective. Let S

be a non empty subspace of T . If S is a retract of T , then S is injective.

Let X be a 1-sorted structure, let Y be a topological structure, and let f be

a map from X into Y . The functor Im f yielding a subspace of Y is defined as

follows:

(Def. 6) Im f = Y ↾ rng f.

Let X be a non empty 1-sorted structure, let Y be a non empty topological

structure, and let f be a map from X into Y . Note that Im f is non empty.

One can prove the following proposition

(10) Let X be a 1-sorted structure, Y be a topological structure, and f be a

map from X into Y . Then the carrier of Im f = rng f.

Let X be a 1-sorted structure, let Y be a non empty topological structure,

and let f be a map from X into Y . The functor f◦ yielding a map from X into

Im f is defined by:

(Def. 7) f◦ = f.
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Next we state the proposition

(11) Let X, Y be non empty topological spaces and f be a map from X into

Y . If f is continuous, then f◦ is continuous.

Let X be a 1-sorted structure, let Y be a non empty topological structure,

and let f be a map from X into Y . One can verify that f◦ is onto.

Let X, Y be topological structures. We say that X is a topological retract

of Y if and only if:

(Def. 8) There exists a map f from Y into Y such that f is continuous and

f · f = f and Im f and X are homeomorphic.

The following proposition is true

(12) Let T , S be non empty topological spaces. Suppose T is injective. Let f

be a map from T into S. If f◦ is a homeomorphism, then T is a topological

retract of S.

The Sierpiński space is a strict topological structure and is defined by the

conditions (Def. 9).

(Def. 9)(i) The carrier of the Sierpiński space = {0, 1}, and

(ii) the topology of the Sierpiński space = {∅, {1}, {0, 1}}.

Let us note that the Sierpiński space is non empty and topological space-like.

One can check that the Sierpiński space is discernible.

Let us note that the Sierpiński space is injective.

Let I be a set and let S be a non empty 1-sorted structure. One can verify

that I 7−→ S is nonempty.

Let I be a set and let T be a topological space. One can check that I 7−→ T

is topological space yielding.

Let I be a set and let L be a reflexive relational structure. One can check

that I 7−→ L is reflexive-yielding.

Let I be a non empty set and let L be a non empty antisymmetric relational

structure. Note that
∏

(I 7−→ L) is antisymmetric.

Let I be a non empty set and let L be a non empty transitive relational

structure. One can check that
∏

(I 7−→ L) is transitive.

The following two propositions are true:

(13) Let T be a Scott topological augmentation of 21

⊆. Then the topology of

T = the topology of the Sierpiński space.

(14) Let I be a non empty set. Then {
∏

((the support of I 7−→ the Sierpiński

space)+·(i, {1})) : i ranges over elements of I} is a prebasis of
∏

(I 7−→ the

Sierpiński space).

Let I be a non empty set and let L be a complete lattice. One can check

that
∏

(I 7−→ L) is complete and has l.u.b.’s.

Let I be a non empty set and let X be an algebraic lower-bounded lattice.

One can check that
∏

(I 7−→ X) is algebraic.
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Next we state several propositions:

(15) Let X be a non empty set. Then there exists a map f from 2X
⊆ into∏

(X 7−→ 21

⊆) such that f is isomorphic and for every subset Y of X holds

f(Y ) = χ
Y,X .

(16) Let I be a non empty set and T be a Scott topological augmentation

of
∏

(I 7−→ 21

⊆). Then the topology of T = the topology of
∏

(I 7−→ the

Sierpiński space).

(17) Let T , S be non empty topological spaces. Suppose the carrier of T = the

carrier of S and the topology of T = the topology of S and T is injective.

Then S is injective.

(18) For every non empty set I holds every Scott topological augmentation

of
∏

I 7−→ 21

⊆ is injective.

(19) Let T be a T0-space. Then there exists a non empty set M and there

exists a map f from T into
∏

(M 7−→ the Sierpiński space) such that f◦

is a homeomorphism.

(20) Let T be a T0-space. Suppose T is injective. Then there exists a non

empty set M such that T is a topological retract of
∏

(M 7−→ the Sier-

piński space).
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