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Summary.We define a for type (going up) macro instruction in terms of
the while macro. This gives an iterative macro with an explicit control variable.
The for macro is used to define a macro for the selection sort acting on a finite
sequence location of SCMFSA. On the way, a macro for finding a minimum in a
section of an array is defined.

MML Identifier: SFMASTR3.

The terminology and notation used in this paper have been introduced in the

following articles: [16], [21], [28], [6], [7], [9], [26], [10], [11], [8], [25], [15], [5],

[13], [29], [30], [23], [3], [4], [2], [1], [24], [22], [12], [19], [17], [18], [27], [20], and

[14].

1. General Preliminaries

The following propositions are true:

(1) Let X be a set, p be a permutation of X, and x, y be elements of X.

Then p +· (x, p(y)) +· (y, p(x)) is a permutation of X.

(2) Let f be a function and x, y be sets. Suppose x ∈ dom f and y ∈ dom f.

Then there exists a permutation p of dom f such that f +· (x, f(y)) +·

(y, f(x)) = f · p.

Let X be a finite non empty subset of R. The functor minX yielding a real

number is defined by:
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(Def. 1) minX ∈ X and for every real number k such that k ∈ X holds minX ¬

k.

Let X be a finite non empty subset of Z. The functor minX yielding an

integer is defined by:

(Def. 2) There exists a finite non empty subset Y of R such that Y = X and

minX = minY.

Let F be a finite sequence of elements of Z and let m, n be natural numbers.

Let us assume that 1 ¬ m and m ¬ n and n ¬ lenF. The functor minnm F yields

a natural number and is defined as follows:

(Def. 3) There exists a finite non empty subset X of Z such that X =

rng〈F (m), . . . , F (n)〉 and (minnm F ) + 1 = (minX) " 〈F (m), . . . , F (n)〉+

m.

We use the following convention: F , F1 denote finite sequences of elements

of Z and k, m, n, m1 denote natural numbers.

The following propositions are true:

(3) Suppose 1 ¬ m and m ¬ n and n ¬ lenF. Then m1 = minnm F if and

only if the following conditions are satisfied:

(i) m ¬ m1,

(ii) m1 ¬ n,

(iii) for every natural number i such that m ¬ i and i ¬ n holds F (m1) ¬

F (i), and

(iv) for every natural number i such that m ¬ i and i < m1 holds F (m1) <

F (i).

(4) If 1 ¬ m and m ¬ lenF, then minmm F = m.

Let F be a finite sequence of elements of Z and let m, n be natural numbers.

We say that F is non decreasing on m, n if and only if:

(Def. 4) For all natural numbers i, j such that m ¬ i and i ¬ j and j ¬ n holds

F (i) ¬ F (j).

Let F be a finite sequence of elements of Z and let n be a natural number.

We say that F is split at n if and only if:

(Def. 5) For all natural numbers i, j such that 1 ¬ i and i ¬ n and n < j and

j ¬ lenF holds F (i) ¬ F (j).

We now state two propositions:

(5) Suppose k + 1 ¬ lenF and m1 = min
(lenF )
(k+1) F and F is split at k and F

is non decreasing on 1, k and F1 = F +· (k + 1, F (m1)) +· (m1, F (k + 1)).

Then F1 is non decreasing on 1, k + 1.

(6) If k + 1 ¬ lenF and m1 = min
(lenF )
(k+1) F and F is split at k and F1 =

F +· (k + 1, F (m1)) +· (m1, F (k + 1)), then F1 is split at k + 1.
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2. SCMFSA Preliminaries

For simplicity, we use the following convention: s is a state of SCMFSA, a, c

are read-write integer locations, a1, b1, c1, d1, x are integer locations, f is a finite

sequence location, I, J are macro instructions, I1 is a good macro instruction,

and k is a natural number.

The following propositions are true:

(7) If I is closed on Initialize(s) and halting on Initialize(s) and I does not

destroy a1, then (IExec(I, s))(a1) = (Initialize(s))(a1).

(8) If s(intloc(0)) = 1, then IExec(StopSCMFSA , s)↾D = s↾D, where D =

Int-Locations∪FinSeq-Locations.

(9) StopSCMFSA does not refer a1.

(10) If a1 6= b1, then c1:=b1 does not refer a1.

(11) (Exec(a:=fb1
, s))(a) = π|s(b1)|s(f).

(12) (Exec(fa1
:=b1, s))(f) = s(f) +· (|s(a1)|, s(b1)).

Let a be a read-write integer location, let b be an integer location, and let

I, J be good macro instructions. Observe that if a > b then I else J is good.

One can prove the following propositions:

(13) UsedIntLoc(if a1 > b1 then I else J) = {a1, b1} ∪ UsedIntLoc(I) ∪

UsedIntLoc(J).

(14) If I does not destroy a1, then while b1 > 0 do I does not destroy a1.

(15) If c1 6= a1 and I does not destroy c1 and J does not destroy c1, then

if a1 > b1 then I else J does not destroy c1.

3. The for-up Macro Instruction

Let a, b, c be integer locations, let I be a macro instruction, and let s be a

state of SCMFSA. The functor StepForUp(a, b, c, I, s) yields a function from N

into
∏
(the object kind of SCMFSA) and is defined by:

(Def. 6) StepForUp(a, b, c, I, s) = StepWhile>0

(a2, I;

AddTo(a, intloc(0));

SubFrom(a2, intloc(0)), s +· (a2, (s(c)− s(b)) + 1) +· (a, s(b))),

where a2 = 1st -RWNotIn({a, b, c} ∪UsedIntLoc(I)).

Next we state several propositions:

(16) If s(intloc(0)) = 1, then (StepForUp(a, b1, c1, I, s))(0)(intloc(0)) = 1.

(17) (StepForUp(a, b1, c1, I, s))(0)(a) = s(b1).
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(18) If a 6= b1, then (StepForUp(a, b1, c1, I, s))(0)(b1) = s(b1).

(19) If a 6= c1, then (StepForUp(a, b1, c1, I, s))(0)(c1) = s(c1).

(20) If a 6= d1 and d1 ∈ UsedIntLoc(I), then (StepForUp(a, b1, c1, I, s))(0)(d1) =

s(d1).

(21) (StepForUp(a, b1, c1, I, s))(0)(f) = s(f).

(22) Suppose s(intloc(0)) = 1. Let a2 be a read-write integer lo-

cation. If a2 = 1st -RWNotIn({a, b1, c1} ∪ UsedIntLoc(I)), then

IExec((a2:=c1);SubFrom(a2, b1);AddTo(a2, intloc(0));(a:=b1), s)↾D = (s+·

(a2, (s(c1)−s(b1))+1)+·(a, s(b1)))↾D, where a2 = 1st -RWNotIn({a, b, c}∪

UsedIntLoc(I)) and D = Int-Locations∪FinSeq-Locations.

Let a, b, c be integer locations, let I be a macro instruction, and let s be a

state of SCMFSA. We say that ProperForUpBody a, b, c, I, s if and only if:

(Def. 7) For every natural number i such that i < (s(c)−s(b))+1 holds I is closed

on (StepForUp(a, b, c, I, s))(i) and halting on (StepForUp(a, b, c, I, s))(i).

Next we state several propositions:

(23) For every parahalting macro instruction I holds ProperForUpBody a1,

b1, c1, I, s.

(24) If (StepForUp(a, b1, c1, I1, s))(k)(intloc(0)) = 1 and I1 is closed on

(StepForUp(a, b1, c1, I1, s))(k) and halting on (StepForUp(a, b1, c1, I1, s))(k),

then (StepForUp(a, b1, c1, I1, s))(k + 1)(intloc(0)) = 1.

(25) Suppose s(intloc(0)) = 1 and ProperForUpBody a, b1, c1, I1, s. Let given

k. Suppose k ¬ (s(c1)− s(b1)) + 1. Then

(i) (StepForUp(a, b1, c1, I1, s))(k)(intloc(0)) = 1,

(ii) if I1 does not destroy a, then (StepForUp(a, b1, c1, I1, s))(k)(a) = k +

s(b1) and (StepForUp(a, b1, c1, I1, s))(k)(a) ¬ s(c1) + 1, and

(iii) (StepForUp(a, b1, c1, I1, s))(k)(1st -RWNotIn({a, b1, c1}∪UsedIntLoc(I1)))+

k = (s(c1)− s(b1)) + 1.

(26) Suppose s(intloc(0)) = 1 and ProperForUpBody a, b1, c1, I1, s. Let

given k. Then (StepForUp(a, b1, c1, I1, s))(k)(1st -RWNotIn({a, b1, c1} ∪

UsedIntLoc(I1))) > 0 if and only if k < (s(c1)− s(b1)) + 1.

(27) Suppose s(intloc(0)) = 1 and ProperForUpBody a, b1, c1, I1, s and

k < (s(c1)−s(b1))+1. Then (StepForUp(a, b1, c1, I1, s))(k+1)↾({a, b1, c1}∪

UsedIntLoc(I1)∪F2) = IExec(I1;AddTo(a, intloc(0)), (StepForUp(a, b1, c1,

I1, s))(k))↾({a, b1, c1}∪UsedIntLoc(I1)∪F2), where F2 = FinSeq-Locations.

Let a, b, c be integer locations and let I be a macro instruction. The functor

for-up(a, b, c, I) yields a macro instruction and is defined by:

(Def. 8) for-up(a, b, c, I) =

(a2:=c);

SubFrom(a2, b);

AddTo(a2, intloc(0));
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(a:=b);(while a2 > 0 do (I;

AddTo(a, intloc(0));SubFrom(a2, intloc(0)))),

where a2 = 1st -RWNotIn({a, b, c} ∪UsedIntLoc(I)).

The following proposition is true

(28) {a1, b1, c1} ∪UsedIntLoc(I) ⊆ UsedIntLoc(for-up(a1, b1, c1, I)).

Let a be a read-write integer location, let b, c be integer locations, and let I

be a good macro instruction. Note that for-up(a, b, c, I) is good.

Next we state four propositions:

(29) If a 6= a1 and a1 6= 1st -RWNotIn({a, b1, c1}∪UsedIntLoc(I)) and I does

not destroy a1, then for-up(a, b1, c1, I) does not destroy a1.

(30) Suppose s(intloc(0)) = 1 and s(b1) > s(c1). Then for every

x such that x 6= a and x ∈ {b1, c1} ∪ UsedIntLoc(I) holds

(IExec(for-up(a, b1, c1, I), s))(x) = s(x) and for every f holds

(IExec(for-up(a, b1, c1, I), s))(f) = s(f).

(31) Suppose s(intloc(0)) = 1 but k = (s(c1) − s(b1)) + 1 but

ProperForUpBody a, b1, c1, I1, s or I1 is parahalting. Then

IExec(for-up(a, b1, c1, I1), s)↾D = (StepForUp(a, b1, c1, I1, s))(k)↾D, where

D = Int-Locations∪FinSeq-Locations.

(32) Suppose s(intloc(0)) = 1 but ProperForUpBody a, b1, c1, I1, s or I1 is

parahalting. Then for-up(a, b1, c1, I1) is closed on s and for-up(a, b1, c1, I1)

is halting on s.

4. Finding Minimum in a Section of an Array

Let s1, f1, m2 be integer locations and let f be a finite sequence location.

The functor FinSeqMin(f, s1, f1,m2) yielding a macro instruction is defined by:

(Def. 9) FinSeqMin(f, s1, f1,m2) =

(m2:=s1);

for-up(c2, s1, f1,

(a3:=fc2);

(a4:=fm2
);

(if a4 > a3 then Macro(m2:=c2) else (StopSCMFSA))),

where c2 = 3rd -RWNotIn({s1, f1, m2}),

a3 = 1st -RWNotIn({s1, f1,m2}), and

a4 = 2nd-RWNotIn({s1, f1,m2}).

Let s1, f1 be integer locations, let m2 be a read-write integer location, and

let f be a finite sequence location. Note that FinSeqMin(f, s1, f1,m2) is good.

The following propositions are true:

(33) If c 6= a1, then FinSeqMin(f, a1, b1, c) does not destroy a1.
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(34) {a1, b1, c} ⊆ UsedIntLoc(FinSeqMin(f, a1, b1, c)).

(35) If s(intloc(0)) = 1, then FinSeqMin(f, a1, b1, c) is closed on s and

FinSeqMin(f, a1, b1, c) is halting on s.

(36) If a1 6= c and b1 6= c and s(intloc(0)) = 1, then

(IExec(FinSeqMin(f, a1, b1, c), s))(f) = s(f) and (IExec(FinSeqMin(f, a1,

b1, c), s))(a1) = s(a1) and (IExec(FinSeqMin(f, a1, b1, c), s))(b1) = s(b1).

(37) If 1 ¬ s(a1) and s(a1) ¬ s(b1) and s(b1) ¬ len s(f) and a1 6= c and

b1 6= c and s(intloc(0)) = 1, then (IExec(FinSeqMin(f, a1, b1, c), s))(c) =

min
|s(b1)|
|s(a1)| s(f).

5. A Swap Macro Instruction

Let f be a finite sequence location and let a, b be integer locations. The

functor swap(f, a, b) yields a macro instruction and is defined as follows:

(Def. 10) swap(f, a, b) = (a3:=fa);(a4:=fb);(fa:=a4);(fb:=a3), where a3 =

1st -RWNotIn({s1, f1,m2}) and a4 = 2nd-RWNotIn({s1, f1,m2}).

Let f be a finite sequence location and let a, b be integer locations. Note

that swap(f, a, b) is good and parahalting.

The following propositions are true:

(38) If c1 6= 1st -RWNotIn({a1, b1}) and c1 6= 2nd-RWNotIn({a1, b1}), then

swap(f, a1, b1) does not destroy c1.

(39) If 1 ¬ s(a1) and s(a1) ¬ len s(f) and 1 ¬ s(b1) and s(b1) ¬

len s(f) and s(intloc(0)) = 1, then (IExec(swap(f, a1, b1), s))(f) = s(f)+·

(s(a1), s(f)(s(b1))) +· (s(b1), s(f)(s(a1))).

(40) Suppose 1 ¬ s(a1) and s(a1) ¬ len s(f) and 1 ¬ s(b1) and s(b1) ¬

len s(f) and s(intloc(0)) = 1. Then (IExec(swap(f, a1, b1), s))(f)(s(a1)) =

s(f)(s(b1)) and (IExec(swap(f, a1, b1), s))(f)(s(b1)) = s(f)(s(a1)).

(41) {a1, b1} ⊆ UsedIntLoc(swap(f, a1, b1)).

(42) UsedInt∗ Loc(swap(f, a1, b1)) = {f}.

6. Selection Sort

Let f be a finite sequence location. The functor Selection-sort f yielding a

macro instruction is defined as follows:

(Def. 11) Selection-sort f = (f1:=lenf); for-up(c2, intloc(0), f ′1,FinSeqMin(f, c2, f
′
1,

m′1); swap(f, c2,m
′
1)), where c2 = 3rd -RWNotIn({s1, f1,m2}), f

′
1 =

1st-NotUsed(swap(f, c2,m
′
1)), and m′1 = 2nd-RWNotIn(∅Int-Locations).
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The following proposition is true

(43) Let S be a state of SCMFSA. Suppose S = IExec(Selection-sort f, s).

Then S(f) is non decreasing on 1, lenS(f) and there exists a permutation

p of Seg len s(f) such that S(f) = s(f) · p.
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