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Summary. We define a for type (going up) macro instruction in terms of
the while macro. This gives an iterative macro with an explicit control variable.
The for macro is used to define a macro for the selection sort acting on a finite
sequence location of SCMpsa. On the way, a macro for finding a minimum in a
section of an array is defined.

MML Identifier: SFMASTR3.

The terminology and notation used in this paper have been introduced in the
following articles: [16], [21], [28], [6], [7], [9], [26], [10], [11], [8], [25], [15], [5],

{13}, [29], [30], [23], [3], [4], [2], [1], [24], [22], [12], [19], [17], [18], [27], [20], and
14].

1. GENERAL PRELIMINARIES

The following propositions are true:
(1) Let X be a set, p be a permutation of X, and x, y be elements of X.
Then p +- (z,p(y)) +- (y,p(x)) is a permutation of X.
(2) Let f be a function and z, y be sets. Suppose x € dom f and y € dom f.
Then there exists a permutation p of dom f such that f +- (z, f(y)) +-
(v, f(x)) = [ - p.
Let X be a finite non empty subset of R. The functor min X yielding a real
number is defined by:
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(Def. 1) min X € X and for every real number k such that k¥ € X holds min X <
k.
Let X be a finite non empty subset of Z. The functor min X yielding an
integer is defined by:

(Def. 2) There exists a finite non empty subset Y of R such that Y = X and
min X = minY.
Let F be a finite sequence of elements of Z and let m, n be natural numbers.
Let us assume that 1 < m and m < n and n < len F. The functor min?, F' yields
a natural number and is defined as follows:

(Def. 3) There exists a finite non empty subset X of Z such that X =
rng(F(m),...,F(n)) and (min}) F)+1 = (min X) <P (F(m),...,F(n)) +
m.
We use the following convention: F', F} denote finite sequences of elements
of Z and k, m, n, m; denote natural numbers.
The following propositions are true:
(3) Suppose 1 < m and m < n and n < len F. Then m; = min}, F' if and
only if the following conditions are satisfied:
(i) m < my,
(i) m <m,
(iii)  for every natural number ¢ such that m < ¢ and ¢ < n holds F(m;) <

F(i), and
(iv)  for every natural number ¢ such that m <1 and ¢ < m; holds F'(m;) <

(4) If 1 <m and m <len F, then min]! F' = m.

Let F be a finite sequence of elements of Z and let m, n be natural numbers.
We say that F' is non decreasing on m, n if and only if:

(Def. 4) For all natural numbers 4, j such that m < i and 7 < j and j < n holds
F(i) < F(j).
Let F be a finite sequence of elements of Z and let n be a natural number.
We say that F' is split at n if and only if:
(Def. 5) For all natural numbers 7, j such that 1 < ¢ and ¢ < n and n < j and
j <len F holds F(i) < F(j).

We now state two propositions:

(5) Suppose k+ 1 <lenF and m; = mingfif;) F and F is split at k and F

is non decreasing on 1, k and F; = F +- (k+ 1, F(my)) +- (m1, F(k+1)).
Then Fj is non decreasing on 1, k + 1.
(6) Ifk+1<lenF and m; = minEfﬂS)F and F is split at k and F} =

F+ - (E+1,F(my))+- (my1, F(k+ 1)), then F is split at k + 1.
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2. SCMpgsa PRELIMINARIES

For simplicity, we use the following convention: s is a state of SCMpga, a, ¢
are read-write integer locations, a1, b1, c¢1, d1, x are integer locations, f is a finite
sequence location, I, J are macro instructions, I; is a good macro instruction,
and k is a natural number.

The following propositions are true:

(7) If I is closed on Initialize(s) and halting on Initialize(s) and I does not
destroy aj, then (IExec(1,s))(a1) = (Initialize(s))(a1).
(8) If s(intloc(0)) = 1, then IExec(Stopscnyg,ss) D = s[D, where D =
Int-Locations U FinSeq-Locations.
(9) Stopgcpg, does not refer ag.
(10) If ay # by, then ¢1:=by does not refer a;.
(11)  (Exec(a:=fp,,5))(@) = ms(py)s(f)-
(12)  (Exec(fa,:=b1,s))(f) = s(f) +- (Is(a1)], s(br)).

Let a be a read-write integer location, let b be an integer location, and let
I, J be good macro instructions. Observe that if a > b then I else J is good.

One can prove the following propositions:

(13) UsedIntLoc(if a; > b; then I else J) = {a1,b1} U UsedIntLoc(I) U
UsedIntLoc(J).
(14) If I does not destroy aj, then while b; > 0 do I does not destroy a;.

(15) If ¢; # a1 and I does not destroy ¢; and J does not destroy c;, then
if a1 > b; then I else J does not destroy c;.

3. THE for-up MACRO INSTRUCTION

Let a, b, ¢ be integer locations, let I be a macro instruction, and let s be a
state of SCMpga. The functor StepForUp(a, b, ¢, I, s) yields a function from N
into [] (the object kind of SCMrpga ) and is defined by:

(Def. 6) StepForUp(a,b,c,I,s) = Step While>0
(az, I;
AddTo(a, intloc(0));
SubFrom(ag, intloc(0)), s +- (a2, (s(c) — s(b)) + 1) + (a, s(b))),
where ag = 15 -RWNotIn({a, b, c} U UsedIntLoc(I)).

Next we state several propositions:

(16) 1If s(intloc(0)) = 1, then (StepForUp(a, b1, c1, I, s))(0)(intloc(0)) = 1.
(17) (StepForUp(a, b1, c1,1,5))(0)(a) = s(b1).
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(18) If a # by, then (StepForUp(a, b1, c1,1,s))(0)(b1) = s(b1).
(19) If a # ¢, then (StepForUp(a, b1, c1,1,s))(0)(c1) = s(c1).
(20) Ifa # d; and d; € UsedIntLoc(I), then (StepForUp(a, b1, c1,1,5))(0)(d1) =

S(dl).

(21) (StepForUp(a,by,c1,1,5))(0)(f) = s(f).

(22) Suppose s(intloc(0)) = 1. Let as be a read-write integer lo-
cation. If ay = 1*-RWNotIn({a,b;,c;} U UsedIntLoc([)), then

[Exec((ag:=c1);SubFrom(ag, b1 );AddTo(ag, intloc(0));(a:=b1), s)[D = (s+-
(ag, (s(c1)—s(b1))+1)+(a,s(b1))) I D, where ag = 15*-RWNotIn({a, b, c}U
UsedIntLoc(7)) and D = Int-Locations U FinSeg-Locations.

Let a, b, ¢ be integer locations, let I be a macro instruction, and let s be a
state of SCMpga. We say that ProperForUpBody a, b, ¢, I, s if and only if:

(Def. 7)  For every natural number i such that i < (s(¢)—s(b))+1 holds I is closed
on (StepForUp(a,b,c,I,s))(i) and halting on (StepForUp(a, b, c, I, s))(i).

Next we state several propositions:

(23) For every parahalting macro instruction I holds ProperForUpBody a1,
bl, C1, I, S.

(24) If (StepForUp(a,by,c1,I1,s))(k)(intloc(0)) = 1 and I; is closed on
(StepForUp(a, by, c1, I1, s))(k) and halting on (StepForUp(a, by, c1, I1, s))(k),
then (StepForUp(a, by, c1, 1, ))(k + 1)(intloc(0)) = 1.

(25) Suppose s(intloc(0)) = 1 and ProperForUpBody a, by, ¢1, I1, s. Let given
k. Suppose k < (s(c1) — s(b1)) + 1. Then

(i)  (StepForUp(a, by, c1, I1,5))(k)(intloc(0)) = 1,
(ii)  if I; does not destroy a, then (StepForUp(a,bi,c1,11,s))(k)(a) =k +
s(b1) and (StepForUp(a, by, c1, 11, 8))(k)(a) < s(c1) + 1, and
(iii)  (StepForUp(a, b, c1, I1,s))(k) (15" -RWNotIn({a, b1, c; fUUsedIntLoc(I1)))+
k= (s(c1) —s(b1)) + 1.

(26) Suppose s(intloc(0)) = 1 and ProperForUpBody a, b1, c1, I, s. Let
given k. Then (StepForUp(a,bs,c1,I1,s))(k)(15*-RWNotIn({a, b1, c1} U
UsedIntLoc(l1))) > 0 if and only if £ < (s(¢1) — s(b1)) + 1.

(27) Suppose s(intloc(0)) = 1 and ProperForUpBody a, b1, c¢1, I1, s and
k < (s(c1)—s(b1))+1. Then (StepForUp(a, by, c1, I1, s))(k+1)[({a, b1, c1 }U
UsedIntLoc(I1)UFy) = IExec(I1;AddTo(a, intloc(0)), (StepForUp(a, by, ¢1,
I, 8))(k))I({a, b1, c1 }UUsedIntLoc(I1)UFy), where F» = FinSeq-Locations.

Let a, b, ¢ be integer locations and let I be a macro instruction. The functor
for-up(a, b, ¢, I') yields a macro instruction and is defined by:
(Def. 8) for-up(a,b,c,I) =
(ag:=c);
SubFrom(as, b);
AddTo(ag, intloc(0));
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(a:=b);(while a2 > 0 do (I;
AddTo(a, intloc(0));SubFrom(as, intloc(0)))),
where ag = 15*-RWNotIn({a, b, c} U UsedIntLoc(I)).
The following proposition is true
(28) {a1,b1,c1} U UsedIntLoc(l) € UsedIntLoc(for-up(a, by, c1,1I)).
Let a be a read-write integer location, let b, ¢ be integer locations, and let I
be a good macro instruction. Note that for-up(a, b, ¢, I) is good.
Next we state four propositions:
(29) If a # ay and a; # 15*-RWNotIn({a, b, c; } UUsedIntLoc(I)) and I does
not destroy ai, then for-up(a,b;,c1, ) does not destroy aj.

(30) Suppose s(intloc(0)) = 1 and s(by) > s(c1). Then for every
x such that * # a and =z € {bi,c1} U UsedIntLoc(I) holds
(IExec(for-up(a, by, c1,1),s))(x) = s(z) and for every f holds

(IExec(for-up(a, b1, c1,1),5))(f) = s(f).

(31) Suppose s(intloc(0)) = 1 but & = (s(c1) — s(b1)) + 1 but
ProperForUpBody a, b1, ¢, I, s or I; is parahalting. Then
IExec(for-up(a, by, c1, 1), s)[ D = (StepForUp(a, b1, c1, I1, s)) (k)| D, where
D = Int-Locations U FinSeq-Locations.

(32) Suppose s(intloc(0)) = 1 but ProperForUpBody a, by, ¢1, 1, s or I is
parahalting. Then for-up(a, b1, c1, I1) is closed on s and for-up(a, by, c1, I1)
is halting on s.

4. FINDING MINIMUM IN A SECTION OF AN ARRAY

Let s1, f1, mo be integer locations and let f be a finite sequence location.
The functor FinSeqMin( f, s1, f1, m2) yielding a macro instruction is defined by:
(Def. 9) FinSeqMin(f, s1, f1,m2) =
(mo:=s1);
for-up(cg, s1, f1,
(a3:=fc);
(a43:fm2)§
(if a4 > a3 then Macro(ma:=cz) else (Stopgcnipg,)))
where cp = 3" -RWNotIn({sy, f1,m2}),
az = 15 -RWNotIn({s1, f1,m2}), and
ay = 2"-RWNotIn({s1, f1,ma}).
Let sy, f1 be integer locations, let mo be a read-write integer location, and
let f be a finite sequence location. Note that FinSeqMin(f, s1, f1, m2) is good.
The following propositions are true:

(33) 1If ¢ # ay, then FinSeqMin(f, a1, b1, c) does not destroy a;.
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(34) {a1,b1,c} C UsedIntLoc(FinSeqMin(f, a1, b1, c)).

(35) If s(intloc(0)) = 1, then FinSeqMin(f,a1,b1,c) is closed on s and
FinSeqMin(f, a1, b1, ¢) is halting on s.

(36) If a9 # ¢ and by # ¢ and s(intloc(0)) = 1, then
(IExec(FinSeqMin(f, a1, b1,¢), s))(f) = s(f) and (IExec(FinSeqMin(f, a1,
bi,c¢),s))(a1) = s(a1) and (IExec(FinSeqMin(f, a1, b1,c),s))(b1) = s(b1).

(37) If 1 < s(a1) and s(a1) < s(b1) and s(b1) < lens(f) and a1 # ¢ and
b1 # c and s(intloc(0)) = 1, then (IExec(FinSeqMin(f,a1,b1,c),s))(c) =
ming ) s(5)

5. A SWAP MACRO INSTRUCTION

Let f be a finite sequence location and let a, b be integer locations. The
functor swap(f, a,b) yields a macro instruction and is defined as follows:
(Def. 10) swap(f,a,b) = (ag:=fa);(as:=1p);(fa:=aa);(fo:=a3), where a3 =
1* -RWNotIn({s1, f1,m2}) and ay = 2°-RWNotIn({s1, f1,m2}).
Let f be a finite sequence location and let a, b be integer locations. Note
that swap(f,a,b) is good and parahalting.
The following propositions are true:

(38) If ¢; # 1*-RWNotIn({a,b1}) and ¢; # 2"-RWNotIn({ay,b1}), then
swap(f, a1, b1) does not destroy c;.

(39) If 1 < s(a1) and s(a;) < lens(f) and 1 < s(by) and s(by) <
len s(f) and s(intloc(0)) = 1, then (IExec(swap(f,a1,b1),))(f) = s(f) +-
(s(ar), s(f)(s(b1))) + (s(br), s(f)(s(a1)))-

(40) Suppose 1 < s(a1) and s(a;) < lens(f) and 1 < s(b1) and s(b1)
len s(f) and s(intloc(0)) = 1. Then (IExec(swap(f, a1,b1),s))(f)(s(a1))
s(f)(s(b1)) and (IExec(swap(f, a1, b1),5))(f)(s(b1)) = s(f)(s(a1)).

(41) {a1,b1} C UsedIntLoc(swap(f, a1, b1)).

(42) UsedInt* Loc(swap(f,a1,b1)) = {f}.

1IN

6. SELECTION SORT

Let f be a finite sequence location. The functor Selection-sort f yielding a
macro instruction is defined as follows:
(Def. 11)  Selection-sort f = (fi:=lenf); for-up(cg, intloc(0), f1, FinSeqMin(f, 2, f1,
mll)ﬂ swap(f, C2, mll))a where C2 = 3rd 'RWNOtIn({Sla fla mQ})? fl
15-NotUsed(swap( f, c2,m})), and m} = 2°-RWNotIn(imi-Locations) -
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The following proposition is true

(43) Let S be a state of SCMpga. Suppose S = IExec(Selection-sort f, s).
Then S(f) is non decreasing on 1, len S(f) and there exists a permutation
p of Seglen s(f) such that S(f) = s(f) - p.
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