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Summary. An attempt to use the while macro, [14], was the origin of wri-
ting this article. The while semantics, as given by J.-C. Chen, is slightly extended
by weakening its correctness conditions and this forced a quite straightforward
remake of a number of theorems from [14]. Numerous additional properties of
the while macro are then proven. In the last section, we define a macro instruc-
tion computing the fusc function (see the SCM program computing the same
function in [10]) and prove its correctness.

MML Identifier: SCMFSA9A.

The papers [17], [15], [21], [19], [26], [7], [11], [12], [13], [24], [6], [29], [9], [27],

[28], [4], [5], [3], [1], [2], [23], [22], [14], [8], [16], [18], [25], and [20] provide the

notation and terminology for this paper.

1. Arithmetic Preliminaries

We follow the rules: k, m, n are natural numbers, i, j are integers, and r is

a real number.

The schemeMinPred deals with a unary functor F yielding a natural number

and a unary predicate P, and states that:

There exists k such that P[k] and for every n such that P[n] holds

k ¬ n

provided the parameters meet the following condition:

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.
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• For every k holds F(k + 1) < F(k) or P[k].

We now state several propositions:

(1) n is odd iff there exists a natural number k such that n = 2 · k + 1.

(2) If 0 ¬ r, then 0 ¬ ⌊r⌋.

(3) If 0 < n, then 0 ¬ (m qua integer) ÷n.

(4) If 0 < i and 1 < j, then i÷ j < i.

(5) If 0 < n, then (m qua integer) ÷n = m÷n and (m qua integer) modn =

mmod n.

2. SCMFSA Preliminaries

In the sequel l is an instruction-location of SCMFSA and i is an instruction

of SCMFSA.

Next we state several propositions:

(6) Let N be a non empty set with non empty elements, S be a hal-

ting von Neumann definite AMI over N , s be a state of S, and k

be a natural number. If CurInstr((Computation(s))(k)) = haltS , then

(Computation(s))(LifeSpan(s)) = (Computation(s))(k).

(7) UsedIntLoc(l 7−→. i) = UsedIntLoc(i).

(8) UsedInt∗ Loc(l 7−→. i) = UsedInt∗ Loc(i).

(9) UsedIntLoc(StopSCMFSA) = ∅.

(10) UsedInt∗ Loc(StopSCMFSA) = ∅.

(11) UsedIntLoc(Goto(l)) = ∅.

(12) UsedInt∗ Loc(Goto(l)) = ∅.

For simplicity, we use the following convention: s, s1, s2 are states of SCMFSA,

a is a read-write integer location, b is an integer location, f is a finite sequence

location, I, J are macro instructions, I1 is a good macro instruction, and i, j,

k are natural numbers.

The following four propositions are true:

(13) UsedIntLoc(if b = 0 then I else J) = {b} ∪ UsedIntLoc(I) ∪

UsedIntLoc(J).

(14) For every integer location a holds UsedInt∗ Loc(if a = 0 then I else J) =

UsedInt∗ Loc(I) ∪UsedInt∗ Loc(J).

(15) UsedIntLoc(if b > 0 then I else J) = {b} ∪ UsedIntLoc(I) ∪

UsedIntLoc(J).

(16) UsedInt∗ Loc(if b > 0 then I else J) = UsedInt∗ Loc(I)∪UsedInt∗ Loc(J).
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3. The while=0 Macro Instruction

Next we state two propositions:

(17) UsedIntLoc(while b = 0 do I) = {b} ∪UsedIntLoc(I).

(18) UsedInt∗ Loc(while b = 0 do I) = UsedInt∗ Loc(I).

Let s be a state of SCMFSA, let a be a read-write integer location, and let

I be a macro instruction. The predicate ProperBodyWhile=0(a, I, s) is defined

as follows:

(Def. 1) For every natural number k such that (StepWhile=0 (a, I, s))(k)(a) =

0 holds I is closed on (StepWhile=0 (a, I, s))(k) and halting on

(StepWhile=0 (a, I, s))(k).

The predicate WithVariantWhile=0(a, I, s) is defined by the condition (Def. 2).

(Def. 2) There exists a function f from
∏
(the object kind of SCMFSA) into N

such that for every natural number k holds f((StepWhile=0 (a, I, s))(k +

1)) < f((StepWhile=0 (a, I, s))(k)) or (StepWhile=0 (a, I, s))(k)(a) 6= 0.

We now state several propositions:

(19) For every parahalting macro instruction I holds

ProperBodyWhile=0(a, I, s).

(20) If ProperBodyWhile=0(a, I, s) and WithVariantWhile=0(a, I, s), then

while a = 0 do I is halting on s and while a = 0 do I is closed on s.

(21) For every parahalting macro instruction I such that

WithVariantWhile=0(a, I, s) holds while a = 0 do I is halting on s and

while a = 0 do I is closed on s.

(22) If (while a = 0 do I)+·S1 ⊆ s and s(a) 6= 0, then LifeSpan(s) = 4 and

for every natural number k holds (Computation(s))(k)↾D = s↾D, where

S1 = Start-At(insloc(0)) and D = Int-Locations∪FinSeq-Locations.

(23) If I is closed on s and halting on s and s(a) = 0, then

(Computation(s+·((while a = 0 do I)+·S1)))(LifeSpan(s+·(I+·S1)) +

3)↾D = (Computation(s+·(I+·S1)))(LifeSpan(s+·(I+·S1)))↾D, where

S1 = Start-At(insloc(0)) and D = Int-Locations∪FinSeq-Locations.

(24) If (StepWhile=0 (a, I, s))(k)(a) 6= 0, then (StepWhile=0 (a, I, s))(k +

1)↾D = (StepWhile=0 (a, I, s))(k)↾D,

where D = Int-Locations∪FinSeq-Locations.

(25) Suppose I is halting on Initialize((StepWhile=0 (a, I, s))(k)), closed on

Initialize((StepWhile=0 (a, I, s))(k)), and parahalting and

(StepWhile=0 (a, I, s))(k)(a) = 0 and (StepWhile=0 (a, I, s))(k)(intloc(0)) =

1. Then (StepWhile=0 (a, I, s))(k+1)↾D = IExec(I, (StepWhile=0 (a, I, s))

(k))↾D, where D = Int-Locations∪FinSeq-Locations.
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(26) If ProperBodyWhile=0(a, I1, s) or I1 is parahalting and if s(intloc(0)) =

1, then for every k holds (StepWhile=0 (a, I1, s))(k)(intloc(0)) = 1.

(27) If ProperBodyWhile=0(a, I, s1) and s1↾D = s2↾D, then for every

k holds (StepWhile=0 (a, I, s1))(k)↾D = (StepWhile=0 (a, I, s2))(k)↾D,

where D = Int-Locations∪FinSeq-Locations.

Let s be a state of SCMFSA, let a be a read-write integer location, and let

I be a macro instruction. Let us assume that ProperBodyWhile=0(a, I, s) or I is

parahalting andWithVariantWhile=0(a, I, s). The functor ExitsAtWhile=0 (a, I, s)

yielding a natural number is defined by the condition (Def. 3).

(Def. 3) There exists a natural number k such that

(i) ExitsAtWhile=0 (a, I, s) = k,

(ii) (StepWhile=0 (a, I, s))(k)(a) 6= 0,

(iii) for every natural number i such that (StepWhile=0 (a, I, s))(i)(a) 6= 0

holds k ¬ i, and

(iv) (Computation(s+·((while a = 0 do I)+·S1)))(LifeSpan(s+·((while a =

0 do I)+·S1)))↾D = (StepWhile=0 (a, I, s))(k)↾D,

where S1 = Start-At(insloc(0)) andD = Int-Locations∪FinSeq-Locations.

One can prove the following two propositions:

(28) If s(intloc(0)) = 1 and s(a) 6= 0, then IExec(while a = 0 do I, s)↾D =

s↾D, where D = Int-Locations∪FinSeq-Locations.

(29) If ProperBodyWhile=0(a, I, Initialize(s)) or I is parahalting and if

WithVariantWhile=0(a, I, Initialize(s)), then IExec(while a = 0 do I, s)↾D

= (StepWhile=0 (a, I, Initialize(s)))(ExitsAtWhile=0 (a, I, Initialize(s)))↾D,

where D = Int-Locations∪FinSeq-Locations.

4. The while>0 Macro Instruction

The following propositions are true:

(30) UsedIntLoc(while b > 0 do I) = {b} ∪UsedIntLoc(I).

(31) UsedInt∗ Loc(while b > 0 do I) = UsedInt∗ Loc(I).

Let s be a state of SCMFSA, let a be a read-write integer location, and let

I be a macro instruction. The predicate ProperBodyWhile>0(a, I, s) is defined

as follows:

(Def. 4) For every natural number k such that (StepWhile>0 (a, I, s))(k)(a) >

0 holds I is closed on (StepWhile>0 (a, I, s))(k) and halting on

(StepWhile>0 (a, I, s))(k).

The predicate WithVariantWhile>0(a, I, s) is defined by the condition (Def. 5).
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(Def. 5) There exists a function f from
∏
(the object kind of SCMFSA) into N

such that for every natural number k holds f((StepWhile>0 (a, I, s))(k +

1)) < f((StepWhile>0 (a, I, s))(k)) or (StepWhile>0 (a, I, s))(k)(a) ¬ 0.

Next we state several propositions:

(32) For every parahalting macro instruction I holds

ProperBodyWhile>0(a, I, s).

(33) If ProperBodyWhile>0(a, I, s) and WithVariantWhile>0(a, I, s), then

while a > 0 do I is halting on s and while a > 0 do I is closed on s.

(34) For every parahalting macro instruction I such that

WithVariantWhile>0(a, I, s) holds while a > 0 do I is halting on s and

while a > 0 do I is closed on s.

(35) If (while a > 0 do I)+·S1 ⊆ s and s(a) ¬ 0, then LifeSpan(s) = 4 and

for every natural number k holds (Computation(s))(k)↾D = s↾D, where

S1 = Start-At(insloc(0)) and D = Int-Locations∪FinSeq-Locations.

(36) If I is closed on s and halting on s and s(a) > 0, then

(Computation(s+·((while a > 0 do I)+·S1)))(LifeSpan(s+·(I+·S1)) +

3)↾D = (Computation(s+·(I+·S1)))(LifeSpan(s+·(I+·S1)))↾D, where

S1 = Start-At(insloc(0)) and D = Int-Locations∪FinSeq-Locations.

(37) If (StepWhile>0 (a, I, s))(k)(a) ¬ 0, then (StepWhile>0 (a, I, s))(k +

1)↾D = (StepWhile>0 (a, I, s))(k)↾D, where D =

Int-Locations∪FinSeq-Locations.

(38) Suppose I is halting on Initialize((StepWhile>0 (a, I, s))(k)), closed on

Initialize((StepWhile>0 (a, I, s))(k)), and parahalting and (StepWhile>0

(a, I, s))(k)(a) > 0 and (StepWhile>0 (a, I, s))(k)(intloc(0)) = 1.

Then (StepWhile>0 (a, I, s))(k + 1)↾D = IExec(I, (StepWhile>0 (a, I, s))

(k))↾D, where D = Int-Locations∪FinSeq-Locations.

(39) If ProperBodyWhile>0(a, I1, s) or I1 is parahalting and if s(intloc(0)) =

1, then for every k holds (StepWhile>0 (a, I1, s))(k)(intloc(0)) = 1.

(40) If ProperBodyWhile>0(a, I, s1) and s1↾D = s2↾D, then for every

k holds (StepWhile>0 (a, I, s1))(k)↾D = (StepWhile>0 (a, I, s2))(k)↾D,

where D = Int-Locations∪FinSeq-Locations.

Let s be a state of SCMFSA, let a be a read-write integer location, and let

I be a macro instruction. Let us assume that ProperBodyWhile>0(a, I, s) or I

is parahalting and WithVariantWhile>0(a, I, s).

The functor ExitsAtWhile>0 (a, I, s) yields a natural number and is defined

by the condition (Def. 6).

(Def. 6) There exists a natural number k such that

(i) ExitsAtWhile>0 (a, I, s) = k,

(ii) (StepWhile>0 (a, I, s))(k)(a) ¬ 0,
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(iii) for every natural number i such that (StepWhile>0 (a, I, s))(i)(a) ¬ 0

holds k ¬ i, and

(iv) (Computation(s+·((while a > 0 do I)+·S1)))(LifeSpan(s+·((while a >

0 do I)+·S1)))↾D = (StepWhile>0 (a, I, s))(k)↾D,

where S1 = Start-At(insloc(0)) andD = Int-Locations∪FinSeq-Locations.

Next we state several propositions:

(41) If s(intloc(0)) = 1 and s(a) ¬ 0, then IExec(while a > 0 do I, s)↾D =

s↾D, where D = Int-Locations∪FinSeq-Locations.

(42) If ProperBodyWhile>0(a, I, Initialize(s)) or I is parahalting and if

WithVariantWhile>0(a, I, Initialize(s)), then IExec(while a > 0 do I, s)↾D

= (StepWhile>0 (a, I, Initialize(s)))(ExitsAtWhile>0 (a, I, Initialize(s)))↾D,

where D = Int-Locations∪FinSeq-Locations.

(43) If (StepWhile>0 (a, I, s))(k)(a) ¬ 0, then for every natural num-

ber n such that k ¬ n holds (StepWhile>0 (a, I, s))(n)↾D =

(StepWhile>0 (a, I, s))(k)↾D, whereD = Int-Locations∪FinSeq-Locations.

(44) If s1↾D = s2↾D and ProperBodyWhile>0(a, I, s1), then

ProperBodyWhile>0(a, I, s2), whereD = Int-Locations∪FinSeq-Locations.

(45) Suppose s(intloc(0)) = 1 and ProperBodyWhile>0(a, I1, s) and

WithVariantWhile>0(a, I1, s). Let given i, j. Suppose i 6= j and

i ¬ ExitsAtWhile>0 (a, I1, s) and j ¬ ExitsAtWhile>0 (a, I1, s).

Then (StepWhile>0 (a, I1, s))(i) 6= (StepWhile>0 (a, I1, s))(j) and

(StepWhile>0 (a, I1, s))(i)↾D 6= (StepWhile>0 (a, I1, s))(j)↾D, where D =

Int-Locations∪FinSeq-Locations.

Let f be a function from
∏
(the object kind of SCMFSA) into N. We say

that f is on data only if and only if:

(Def. 7) For all s1, s2 such that s1↾D = s2↾D holds f(s1) = f(s2), where D =

Int-Locations∪FinSeq-Locations.

We now state two propositions:

(46) Suppose s(intloc(0)) = 1 and ProperBodyWhile>0(a, I1, s) and

WithVariantWhile>0(a, I1, s). Then there exists a function f from
∏
(the

object kind of SCMFSA) into N such that f is on data only and

for every natural number k holds f((StepWhile>0 (a, I1, s))(k + 1)) <

f((StepWhile>0 (a, I1, s))(k)) or (StepWhile>0 (a, I1, s))(k)(a) ¬ 0.

(47) If s1(intloc(0)) = 1 and s1↾D = s2↾D and ProperBodyWhile>0(a, I1, s1)

and WithVariantWhile>0(a, I1, s1), then WithVariantWhile>0(a, I1, s2),

where D = Int-Locations∪FinSeq-Locations.
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5. A Macro for the fusc Function

Let N , r1 be integer locations. The functor Fusc macro(N, r1) yields a macro

instruction and is defined as follows:

(Def. 8) Fusc macro(N, r1) =

SubFrom(r1, r1);

(n1:= intloc(0));

(a1:=N);

(while a1 > 0 do

((r2:=2);

Divide(a1, r2);

(if r2 = 0 then

Macro(AddTo(n1, r1)) else

Macro(AddTo(r1, n1))))),

where n1 = 1st -RWNotIn({N, r1}), a1 = 2nd-RWNotIn({N, r1}), and r2 =

3rd -RWNotIn({N, r1}).

One can prove the following proposition

(48) Let N , r1 be read-write integer locations. Suppose N 6= r1. Let n be

a natural number. If n = s(N), then (IExec(Fusc macro(N, r1), s))(r1) =

Fusc(n) and (IExec(Fusc macro(N, r1), s))(N) = n.
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