
FORMALIZED MATHEMATICS

Volume 7, Number 1, 1998

University of Białystok

The while Macro Instructions of SCMFSA.

Part II

Piotr Rudnicki1

University of Alberta

Edmonton

Summary. An attempt to use the while macro, [14], was the origin of wri-
ting this article. The while semantics, as given by J.-C. Chen, is slightly extended
by weakening its correctness conditions and this forced a quite straightforward
remake of a number of theorems from [14]. Numerous additional properties of
the while macro are then proven. In the last section, we define a macro instruc-
tion computing the fusc function (see the SCM program computing the same
function in [10]) and prove its correctness.

MML Identifier: SCMFSA9A.

The papers [17], [15], [21], [19], [26], [7], [11], [12], [13], [24], [6], [29], [9], [27],

[28], [4], [5], [3], [1], [2], [23], [22], [14], [8], [16], [18], [25], and [20] provide the

notation and terminology for this paper.

1. Arithmetic Preliminaries

We follow the rules: k, m, n are natural numbers, i, j are integers, and r is

a real number.

The schemeMinPred deals with a unary functor F yielding a natural number

and a unary predicate P, and states that:

There exists k such that P[k] and for every n such that P[n] holds

k ¬ n

provided the parameters meet the following condition:

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

91
c© 1998 University of Białystok

ISSN 1426–2630



92 piotr rudnicki

• For every k holds F(k + 1) < F(k) or P[k].

We now state several propositions:

(1) n is odd iff there exists a natural number k such that n = 2 · k + 1.

(2) If 0 ¬ r, then 0 ¬ ⌊r⌋.

(3) If 0 < n, then 0 ¬ (m qua integer) ÷n.

(4) If 0 < i and 1 < j, then i÷ j < i.

(5) If 0 < n, then (m qua integer) ÷n = m÷n and (m qua integer) modn =

mmod n.

2. SCMFSA Preliminaries

In the sequel l is an instruction-location of SCMFSA and i is an instruction

of SCMFSA.

Next we state several propositions:

(6) Let N be a non empty set with non empty elements, S be a hal-

ting von Neumann definite AMI over N , s be a state of S, and k

be a natural number. If CurInstr((Computation(s))(k)) = haltS , then

(Computation(s))(LifeSpan(s)) = (Computation(s))(k).

(7) UsedIntLoc(l 7−→. i) = UsedIntLoc(i).

(8) UsedInt∗ Loc(l 7−→. i) = UsedInt∗ Loc(i).

(9) UsedIntLoc(StopSCMFSA) = ∅.

(10) UsedInt∗ Loc(StopSCMFSA) = ∅.

(11) UsedIntLoc(Goto(l)) = ∅.

(12) UsedInt∗ Loc(Goto(l)) = ∅.

For simplicity, we use the following convention: s, s1, s2 are states of SCMFSA,

a is a read-write integer location, b is an integer location, f is a finite sequence

location, I, J are macro instructions, I1 is a good macro instruction, and i, j,

k are natural numbers.

The following four propositions are true:

(13) UsedIntLoc(if b = 0 then I else J) = {b} ∪ UsedIntLoc(I) ∪

UsedIntLoc(J).

(14) For every integer location a holds UsedInt∗ Loc(if a = 0 then I else J) =

UsedInt∗ Loc(I) ∪UsedInt∗ Loc(J).

(15) UsedIntLoc(if b > 0 then I else J) = {b} ∪ UsedIntLoc(I) ∪

UsedIntLoc(J).

(16) UsedInt∗ Loc(if b > 0 then I else J) = UsedInt∗ Loc(I)∪UsedInt∗ Loc(J).



the while macro instructions of . . . 93

3. The while=0 Macro Instruction

Next we state two propositions:

(17) UsedIntLoc(while b = 0 do I) = {b} ∪UsedIntLoc(I).

(18) UsedInt∗ Loc(while b = 0 do I) = UsedInt∗ Loc(I).

Let s be a state of SCMFSA, let a be a read-write integer location, and let

I be a macro instruction. The predicate ProperBodyWhile=0(a, I, s) is defined

as follows:

(Def. 1) For every natural number k such that (StepWhile=0 (a, I, s))(k)(a) =

0 holds I is closed on (StepWhile=0 (a, I, s))(k) and halting on

(StepWhile=0 (a, I, s))(k).

The predicate WithVariantWhile=0(a, I, s) is defined by the condition (Def. 2).

(Def. 2) There exists a function f from
∏
(the object kind of SCMFSA) into N

such that for every natural number k holds f((StepWhile=0 (a, I, s))(k +

1)) < f((StepWhile=0 (a, I, s))(k)) or (StepWhile=0 (a, I, s))(k)(a) 6= 0.

We now state several propositions:

(19) For every parahalting macro instruction I holds

ProperBodyWhile=0(a, I, s).

(20) If ProperBodyWhile=0(a, I, s) and WithVariantWhile=0(a, I, s), then

while a = 0 do I is halting on s and while a = 0 do I is closed on s.

(21) For every parahalting macro instruction I such that

WithVariantWhile=0(a, I, s) holds while a = 0 do I is halting on s and

while a = 0 do I is closed on s.

(22) If (while a = 0 do I)+·S1 ⊆ s and s(a) 6= 0, then LifeSpan(s) = 4 and

for every natural number k holds (Computation(s))(k)↾D = s↾D, where

S1 = Start-At(insloc(0)) and D = Int-Locations∪FinSeq-Locations.

(23) If I is closed on s and halting on s and s(a) = 0, then

(Computation(s+·((while a = 0 do I)+·S1)))(LifeSpan(s+·(I+·S1)) +

3)↾D = (Computation(s+·(I+·S1)))(LifeSpan(s+·(I+·S1)))↾D, where

S1 = Start-At(insloc(0)) and D = Int-Locations∪FinSeq-Locations.

(24) If (StepWhile=0 (a, I, s))(k)(a) 6= 0, then (StepWhile=0 (a, I, s))(k +

1)↾D = (StepWhile=0 (a, I, s))(k)↾D,

where D = Int-Locations∪FinSeq-Locations.

(25) Suppose I is halting on Initialize((StepWhile=0 (a, I, s))(k)), closed on

Initialize((StepWhile=0 (a, I, s))(k)), and parahalting and

(StepWhile=0 (a, I, s))(k)(a) = 0 and (StepWhile=0 (a, I, s))(k)(intloc(0)) =

1. Then (StepWhile=0 (a, I, s))(k+1)↾D = IExec(I, (StepWhile=0 (a, I, s))

(k))↾D, where D = Int-Locations∪FinSeq-Locations.



94 piotr rudnicki

(26) If ProperBodyWhile=0(a, I1, s) or I1 is parahalting and if s(intloc(0)) =

1, then for every k holds (StepWhile=0 (a, I1, s))(k)(intloc(0)) = 1.

(27) If ProperBodyWhile=0(a, I, s1) and s1↾D = s2↾D, then for every

k holds (StepWhile=0 (a, I, s1))(k)↾D = (StepWhile=0 (a, I, s2))(k)↾D,

where D = Int-Locations∪FinSeq-Locations.

Let s be a state of SCMFSA, let a be a read-write integer location, and let

I be a macro instruction. Let us assume that ProperBodyWhile=0(a, I, s) or I is

parahalting andWithVariantWhile=0(a, I, s). The functor ExitsAtWhile=0 (a, I, s)

yielding a natural number is defined by the condition (Def. 3).

(Def. 3) There exists a natural number k such that

(i) ExitsAtWhile=0 (a, I, s) = k,

(ii) (StepWhile=0 (a, I, s))(k)(a) 6= 0,

(iii) for every natural number i such that (StepWhile=0 (a, I, s))(i)(a) 6= 0

holds k ¬ i, and

(iv) (Computation(s+·((while a = 0 do I)+·S1)))(LifeSpan(s+·((while a =

0 do I)+·S1)))↾D = (StepWhile=0 (a, I, s))(k)↾D,

where S1 = Start-At(insloc(0)) andD = Int-Locations∪FinSeq-Locations.

One can prove the following two propositions:

(28) If s(intloc(0)) = 1 and s(a) 6= 0, then IExec(while a = 0 do I, s)↾D =

s↾D, where D = Int-Locations∪FinSeq-Locations.

(29) If ProperBodyWhile=0(a, I, Initialize(s)) or I is parahalting and if

WithVariantWhile=0(a, I, Initialize(s)), then IExec(while a = 0 do I, s)↾D

= (StepWhile=0 (a, I, Initialize(s)))(ExitsAtWhile=0 (a, I, Initialize(s)))↾D,

where D = Int-Locations∪FinSeq-Locations.

4. The while>0 Macro Instruction

The following propositions are true:

(30) UsedIntLoc(while b > 0 do I) = {b} ∪UsedIntLoc(I).

(31) UsedInt∗ Loc(while b > 0 do I) = UsedInt∗ Loc(I).

Let s be a state of SCMFSA, let a be a read-write integer location, and let

I be a macro instruction. The predicate ProperBodyWhile>0(a, I, s) is defined

as follows:

(Def. 4) For every natural number k such that (StepWhile>0 (a, I, s))(k)(a) >

0 holds I is closed on (StepWhile>0 (a, I, s))(k) and halting on

(StepWhile>0 (a, I, s))(k).

The predicate WithVariantWhile>0(a, I, s) is defined by the condition (Def. 5).



the while macro instructions of . . . 95

(Def. 5) There exists a function f from
∏
(the object kind of SCMFSA) into N

such that for every natural number k holds f((StepWhile>0 (a, I, s))(k +

1)) < f((StepWhile>0 (a, I, s))(k)) or (StepWhile>0 (a, I, s))(k)(a) ¬ 0.

Next we state several propositions:

(32) For every parahalting macro instruction I holds

ProperBodyWhile>0(a, I, s).

(33) If ProperBodyWhile>0(a, I, s) and WithVariantWhile>0(a, I, s), then

while a > 0 do I is halting on s and while a > 0 do I is closed on s.

(34) For every parahalting macro instruction I such that

WithVariantWhile>0(a, I, s) holds while a > 0 do I is halting on s and

while a > 0 do I is closed on s.

(35) If (while a > 0 do I)+·S1 ⊆ s and s(a) ¬ 0, then LifeSpan(s) = 4 and

for every natural number k holds (Computation(s))(k)↾D = s↾D, where

S1 = Start-At(insloc(0)) and D = Int-Locations∪FinSeq-Locations.

(36) If I is closed on s and halting on s and s(a) > 0, then

(Computation(s+·((while a > 0 do I)+·S1)))(LifeSpan(s+·(I+·S1)) +

3)↾D = (Computation(s+·(I+·S1)))(LifeSpan(s+·(I+·S1)))↾D, where

S1 = Start-At(insloc(0)) and D = Int-Locations∪FinSeq-Locations.

(37) If (StepWhile>0 (a, I, s))(k)(a) ¬ 0, then (StepWhile>0 (a, I, s))(k +

1)↾D = (StepWhile>0 (a, I, s))(k)↾D, where D =

Int-Locations∪FinSeq-Locations.

(38) Suppose I is halting on Initialize((StepWhile>0 (a, I, s))(k)), closed on

Initialize((StepWhile>0 (a, I, s))(k)), and parahalting and (StepWhile>0

(a, I, s))(k)(a) > 0 and (StepWhile>0 (a, I, s))(k)(intloc(0)) = 1.

Then (StepWhile>0 (a, I, s))(k + 1)↾D = IExec(I, (StepWhile>0 (a, I, s))

(k))↾D, where D = Int-Locations∪FinSeq-Locations.

(39) If ProperBodyWhile>0(a, I1, s) or I1 is parahalting and if s(intloc(0)) =

1, then for every k holds (StepWhile>0 (a, I1, s))(k)(intloc(0)) = 1.

(40) If ProperBodyWhile>0(a, I, s1) and s1↾D = s2↾D, then for every

k holds (StepWhile>0 (a, I, s1))(k)↾D = (StepWhile>0 (a, I, s2))(k)↾D,

where D = Int-Locations∪FinSeq-Locations.

Let s be a state of SCMFSA, let a be a read-write integer location, and let

I be a macro instruction. Let us assume that ProperBodyWhile>0(a, I, s) or I

is parahalting and WithVariantWhile>0(a, I, s).

The functor ExitsAtWhile>0 (a, I, s) yields a natural number and is defined

by the condition (Def. 6).

(Def. 6) There exists a natural number k such that

(i) ExitsAtWhile>0 (a, I, s) = k,

(ii) (StepWhile>0 (a, I, s))(k)(a) ¬ 0,



96 piotr rudnicki

(iii) for every natural number i such that (StepWhile>0 (a, I, s))(i)(a) ¬ 0

holds k ¬ i, and

(iv) (Computation(s+·((while a > 0 do I)+·S1)))(LifeSpan(s+·((while a >

0 do I)+·S1)))↾D = (StepWhile>0 (a, I, s))(k)↾D,

where S1 = Start-At(insloc(0)) andD = Int-Locations∪FinSeq-Locations.

Next we state several propositions:

(41) If s(intloc(0)) = 1 and s(a) ¬ 0, then IExec(while a > 0 do I, s)↾D =

s↾D, where D = Int-Locations∪FinSeq-Locations.

(42) If ProperBodyWhile>0(a, I, Initialize(s)) or I is parahalting and if

WithVariantWhile>0(a, I, Initialize(s)), then IExec(while a > 0 do I, s)↾D

= (StepWhile>0 (a, I, Initialize(s)))(ExitsAtWhile>0 (a, I, Initialize(s)))↾D,

where D = Int-Locations∪FinSeq-Locations.

(43) If (StepWhile>0 (a, I, s))(k)(a) ¬ 0, then for every natural num-

ber n such that k ¬ n holds (StepWhile>0 (a, I, s))(n)↾D =

(StepWhile>0 (a, I, s))(k)↾D, whereD = Int-Locations∪FinSeq-Locations.

(44) If s1↾D = s2↾D and ProperBodyWhile>0(a, I, s1), then

ProperBodyWhile>0(a, I, s2), whereD = Int-Locations∪FinSeq-Locations.

(45) Suppose s(intloc(0)) = 1 and ProperBodyWhile>0(a, I1, s) and

WithVariantWhile>0(a, I1, s). Let given i, j. Suppose i 6= j and

i ¬ ExitsAtWhile>0 (a, I1, s) and j ¬ ExitsAtWhile>0 (a, I1, s).

Then (StepWhile>0 (a, I1, s))(i) 6= (StepWhile>0 (a, I1, s))(j) and

(StepWhile>0 (a, I1, s))(i)↾D 6= (StepWhile>0 (a, I1, s))(j)↾D, where D =

Int-Locations∪FinSeq-Locations.

Let f be a function from
∏
(the object kind of SCMFSA) into N. We say

that f is on data only if and only if:

(Def. 7) For all s1, s2 such that s1↾D = s2↾D holds f(s1) = f(s2), where D =

Int-Locations∪FinSeq-Locations.

We now state two propositions:

(46) Suppose s(intloc(0)) = 1 and ProperBodyWhile>0(a, I1, s) and

WithVariantWhile>0(a, I1, s). Then there exists a function f from
∏
(the

object kind of SCMFSA) into N such that f is on data only and

for every natural number k holds f((StepWhile>0 (a, I1, s))(k + 1)) <

f((StepWhile>0 (a, I1, s))(k)) or (StepWhile>0 (a, I1, s))(k)(a) ¬ 0.

(47) If s1(intloc(0)) = 1 and s1↾D = s2↾D and ProperBodyWhile>0(a, I1, s1)

and WithVariantWhile>0(a, I1, s1), then WithVariantWhile>0(a, I1, s2),

where D = Int-Locations∪FinSeq-Locations.



the while macro instructions of . . . 97

5. A Macro for the fusc Function

Let N , r1 be integer locations. The functor Fusc macro(N, r1) yields a macro

instruction and is defined as follows:

(Def. 8) Fusc macro(N, r1) =

SubFrom(r1, r1);

(n1:= intloc(0));

(a1:=N);

(while a1 > 0 do

((r2:=2);

Divide(a1, r2);

(if r2 = 0 then

Macro(AddTo(n1, r1)) else

Macro(AddTo(r1, n1))))),

where n1 = 1st -RWNotIn({N, r1}), a1 = 2nd-RWNotIn({N, r1}), and r2 =

3rd -RWNotIn({N, r1}).

One can prove the following proposition

(48) Let N , r1 be read-write integer locations. Suppose N 6= r1. Let n be

a natural number. If n = s(N), then (IExec(Fusc macro(N, r1), s))(r1) =

Fusc(n) and (IExec(Fusc macro(N, r1), s))(N) = n.

References

[1] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part I. Formalized
Mathematics, 6(1):65–72, 1997.

[2] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part II. Formalized
Mathematics, 6(1):73–80, 1997.

[3] Noriko Asamoto. Constant assignment macro instructions of SCMFSA. Part II. Forma-
lized Mathematics, 6(1):59–63, 1997.

[4] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.

[6] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[7] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[8] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized
Mathematics, 4(1):61–67, 1993.

[9] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part I - preliminaries.
Formalized Mathematics, 4(1):69–72, 1993.

[10] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part II - programs.
Formalized Mathematics, 4(1):73–75, 1993.

[11] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[12] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[13] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.



98 piotr rudnicki

[14] Jing-Chao Chen. While macro instructions of SCMFSA. Formalized Mathematics,
6(4):553–561, 1997.

[15] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[16] Piotr Rudnicki. On the composition of non-parahalting macro instructions. Formalized
Mathematics, 7(1):87–92, 1998.

[17] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-
matics, 6(3):335–338, 1997.

[18] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized Ma-
thematics, 6(1):29–36, 1997.

[19] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[21] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[22] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.

[23] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.
Formalized Mathematics, 5(4):519–528, 1996.

[24] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[26] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

[29] Wojciech Zielonka. Preliminaries to the Lambek calculus. Formalized Mathematics,
2(3):413–418, 1991.

Received June 3, 1998


