The while Macro Instructions of SCM_{FSA} . Part II

Piotr Rudnicki¹ University of Alberta Edmonton

Summary. An attempt to use the while macro, [14], was the origin of writing this article. The while semantics, as given by J.-C. Chen, is slightly extended by weakening its correctness conditions and this forced a quite straightforward remake of a number of theorems from [14]. Numerous additional properties of the while macro are then proven. In the last section, we define a macro instruction computing the fusc function (see the SCM program computing the same function in [10]) and prove its correctness.

MML Identifier: SCMFSA9A.

The papers [17], [15], [21], [19], [26], [7], [11], [12], [13], [24], [6], [29], [9], [27], [28], [4], [5], [3], [1], [2], [23], [22], [14], [8], [16], [18], [25], and [20] provide the notation and terminology for this paper.

1. Arithmetic Preliminaries

We follow the rules: k, m, n are natural numbers, i, j are integers, and r is a real number

The scheme MinPred deals with a unary functor \mathcal{F} yielding a natural number and a unary predicate \mathcal{P} , and states that:

There exists k such that $\mathcal{P}[k]$ and for every n such that $\mathcal{P}[n]$ holds $k \leq n$

provided the parameters meet the following condition:

¹This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

- For every k holds $\mathcal{F}(k+1) < \mathcal{F}(k)$ or $\mathcal{P}[k]$.
- We now state several propositions:
- (1) n is odd iff there exists a natural number k such that $n = 2 \cdot k + 1$.
- (2) If $0 \leqslant r$, then $0 \leqslant |r|$.
- (3) If 0 < n, then $0 \le (m \text{ qua integer}) \div n$.
- (4) If 0 < i and 1 < j, then $i \div j < i$.
- (5) If 0 < n, then $(m \text{ qua integer}) \div n = m \div n$ and $(m \text{ qua integer}) \mod n = m \mod n$.

2. SCM_{FSA} Preliminaries

In the sequel l is an instruction-location of \mathbf{SCM}_{FSA} and i is an instruction of \mathbf{SCM}_{FSA} .

Next we state several propositions:

- (6) Let N be a non empty set with non empty elements, S be a halting von Neumann definite AMI over N, s be a state of S, and k be a natural number. If $CurInstr((Computation(s))(k)) = halt_S$, then (Computation(s))(LifeSpan(s)) = (Computation(s))(k).
- (7) UsedIntLoc($l \mapsto i$) = UsedIntLoc(i).
- (8) UsedInt* Loc($l \mapsto i$) = UsedInt* Loc(i).
- (9) UsedIntLoc(Stop_{SCM_{ESA}}) = \emptyset .
- (10) $UsedInt^* Loc(Stop_{SCM_{FSA}}) = \emptyset.$
- (11) UsedIntLoc(Goto(l)) = \emptyset .
- (12) UsedInt* Loc(Goto(l)) = \emptyset .

For simplicity, we use the following convention: s, s_1 , s_2 are states of \mathbf{SCM}_{FSA} , a is a read-write integer location, b is an integer location, f is a finite sequence location, I, J are macro instructions, I_1 is a good macro instruction, and i, j, k are natural numbers.

The following four propositions are true:

- (13) UsedIntLoc(if b = 0 then I else $J) = \{b\} \cup U$ sedIntLoc(I) \cup UsedIntLoc(J).
- (14) For every integer location a holds UsedInt* Loc(**if** a = 0 **then** I **else** J) = UsedInt* Loc(I) \cup UsedInt* Loc(J).
- (15) UsedIntLoc(if b > 0 then I else $J) = \{b\} \cup$ UsedIntLoc(I) \cup UsedIntLoc(J).
- (16) UsedInt* Loc(if b > 0 then I else J) = UsedInt* Loc(I) \cup UsedInt* Loc(J).

3. The while=0 Macro Instruction

Next we state two propositions:

- (17) UsedIntLoc(while b = 0 do I) = $\{b\} \cup$ UsedIntLoc(I).
- (18) UsedInt* Loc(while b = 0 do I) = UsedInt* Loc(I).

Let s be a state of \mathbf{SCM}_{FSA} , let a be a read-write integer location, and let I be a macro instruction. The predicate ProperBodyWhile=0(a, I, s) is defined as follows:

(Def. 1) For every natural number k such that $(Step While = \theta(a, I, s))(k)(a) = 0$ holds I is closed on $(Step While = \theta(a, I, s))(k)$ and halting on $(Step While = \theta(a, I, s))(k)$.

The predicate WithVariantWhile=0(a, I, s) is defined by the condition (Def. 2).

(Def. 2) There exists a function f from \prod (the object kind of \mathbf{SCM}_{FSA}) into \mathbb{N} such that for every natural number k holds $f((StepWhile=\theta(a,I,s))(k+1)) < f((StepWhile=\theta(a,I,s))(k))$ or $(StepWhile=\theta(a,I,s))(k)(a) \neq 0$.

We now state several propositions:

- (19) For every parahalting macro instruction I holds ProperBodyWhile=0(a, I, s).
- (20) If ProperBodyWhile=0(a, I, s) and WithVariantWhile=0(a, I, s), then while a = 0 do I is halting on s and while a = 0 do I is closed on s.
- (21) For every parahalting macro instruction I such that WithVariantWhile=0(a, I, s) holds **while** a = 0 **do** I is halting on s and **while** a = 0 **do** I is closed on s.
- (22) If (while a = 0 do I)+ $\cdot S_1 \subseteq s$ and $s(a) \neq 0$, then LifeSpan(s) = 4 and for every natural number k holds (Computation(s))(k) $\upharpoonright D = s \upharpoonright D$, where $S_1 = \text{Start-At}(\text{insloc}(0))$ and $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (23) If I is closed on s and halting on s and s(a) = 0, then $(Computation(s+\cdot((\mathbf{while}\ a = 0\ \mathbf{do}\ I)+\cdot S_1)))(LifeSpan(s+\cdot(I+\cdot S_1))+3)\upharpoonright D = (Computation(s+\cdot(I+\cdot S_1)))(LifeSpan(s+\cdot(I+\cdot S_1)))\upharpoonright D$, where $S_1 = Start-At(insloc(0))$ and $D = Int-Locations \cup FinSeq-Locations$.
- (24) If $(Step While = \theta(a, I, s))(k)(a) \neq 0$, then $(Step While = \theta(a, I, s))(k + 1) \upharpoonright D = (Step While = \theta(a, I, s))(k) \upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (25) Suppose I is halting on Initialize($(Step While = \theta(a, I, s))(k)$), closed on Initialize($(Step While = \theta(a, I, s))(k)$), and parahalting and $(Step While = \theta(a, I, s))(k)(a) = 0$ and $(Step While = \theta(a, I, s))(k)(intloc(0)) = 1$. Then $(Step While = \theta(a, I, s))(k+1) \upharpoonright D = \text{IExec}(I, (Step While = \theta(a, I, s))(k)) \upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.

- (26) If ProperBodyWhile= $0(a, I_1, s)$ or I_1 is parahalting and if s(intloc(0)) = 1, then for every k holds $(StepWhile=0(a, I_1, s))(k)(\text{intloc}(0)) = 1$.
- (27) If ProperBodyWhile= $0(a, I, s_1)$ and $s_1 \upharpoonright D = s_2 \upharpoonright D$, then for every k holds $(Step While=\theta(a, I, s_1))(k) \upharpoonright D = (Step While=\theta(a, I, s_2))(k) \upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.

Let s be a state of \mathbf{SCM}_{FSA} , let a be a read-write integer location, and let I be a macro instruction. Let us assume that ProperBodyWhile=0(a, I, s) or I is parahalting and WithVariantWhile=0(a, I, s). The functor ExitsAtWhile=0(a, I, s) yielding a natural number is defined by the condition (Def. 3).

- (Def. 3) There exists a natural number k such that
 - (i) $ExitsAtWhile = \theta(a, I, s) = k,$
 - (ii) $(Step While = \theta(a, I, s))(k)(a) \neq 0,$
 - (iii) for every natural number i such that $(Step While = \theta(a, I, s))(i)(a) \neq 0$ holds $k \leq i$, and
 - (iv) (Computation($s+\cdot((\mathbf{while}\ a=0\ \mathbf{do}\ I)+\cdot S_1))$)(LifeSpan($s+\cdot((\mathbf{while}\ a=0\ \mathbf{do}\ I)+\cdot S_1))$) $\upharpoonright D=(Step\,While=\theta(a,I,s))(k)\upharpoonright D,$ where $S_1=\operatorname{Start-At}(\operatorname{insloc}(0))$ and $D=\operatorname{Int-Locations}\cup\operatorname{FinSeq-Locations}.$ One can prove the following two propositions:
 - (28) If $s(\operatorname{intloc}(0)) = 1$ and $s(a) \neq 0$, then $\operatorname{IExec}(\mathbf{while}\ a = 0\ \mathbf{do}\ I, s) \upharpoonright D = s \upharpoonright D$, where $D = \operatorname{Int-Locations} \cup \operatorname{FinSeq-Locations}$.
 - (29) If ProperBodyWhile=0(a, I, Initialize(s)) or I is parahalting and if WithVariantWhile=0(a, I, Initialize(s)), then $\text{IExec}(\mathbf{while}\ a = 0\ \mathbf{do}\ I, s) \upharpoonright D$ = $(StepWhile=0(a, I, \text{Initialize}(s)))(ExitsAtWhile=0(a, I, \text{Initialize}(s)))\upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.

4. The while>0 Macro Instruction

The following propositions are true:

- (30) UsedIntLoc(while b > 0 do I) = $\{b\} \cup$ UsedIntLoc(I).
- (31) UsedInt* Loc(while b > 0 do I) = UsedInt* Loc(I).

Let s be a state of \mathbf{SCM}_{FSA} , let a be a read-write integer location, and let I be a macro instruction. The predicate ProperBodyWhile>0(a, I, s) is defined as follows:

(Def. 4) For every natural number k such that $(Step While > \theta(a, I, s))(k)(a) > 0$ holds I is closed on $(Step While > \theta(a, I, s))(k)$ and halting on $(Step While > \theta(a, I, s))(k)$.

The predicate With Variant While > 0(a, I, s) is defined by the condition (Def. 5).

(Def. 5) There exists a function f from \prod (the object kind of \mathbf{SCM}_{FSA}) into \mathbb{N} such that for every natural number k holds $f((Step While > \theta(a, I, s))(k + 1)) < f((Step While > \theta(a, I, s))(k))$ or $(Step While > \theta(a, I, s))(k)(a) \leq 0$.

Next we state several propositions:

- (32) For every parahalting macro instruction I holds ProperBodyWhile>0(a, I, s).
- (33) If ProperBodyWhile>0(a, I, s) and WithVariantWhile>0(a, I, s), then while a > 0 do I is halting on s and while a > 0 do I is closed on s.
- (34) For every parahalting macro instruction I such that WithVariantWhile>0(a, I, s) holds while a > 0 do I is halting on s and while a > 0 do I is closed on s.
- (35) If (while a > 0 do I)+ $\cdot S_1 \subseteq s$ and $s(a) \leq 0$, then LifeSpan(s) = 4 and for every natural number k holds (Computation(s))(k) $\upharpoonright D = s \upharpoonright D$, where $S_1 = \text{Start-At}(\text{insloc}(0))$ and $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (36) If I is closed on s and halting on s and s(a) > 0, then $(Computation(s+\cdot((\mathbf{while}\ a > 0\ \mathbf{do}\ I)+\cdot S_1)))(LifeSpan(s+\cdot(I+\cdot S_1))+3)\upharpoonright D = (Computation(s+\cdot(I+\cdot S_1)))(LifeSpan(s+\cdot(I+\cdot S_1)))\upharpoonright D$, where $S_1 = Start-At(insloc(0))$ and $D = Int-Locations \cup FinSeq-Locations$.
- (37) If $(Step While > \theta(a, I, s))(k)(a) \leq 0$, then $(Step While > \theta(a, I, s))(k + 1) \upharpoonright D = (Step While > \theta(a, I, s))(k) \upharpoonright D$, where $D = Int\text{-Locations} \cup FinSeq\text{-Locations}$.
- (38) Suppose I is halting on Initialize($(Step While > \theta(a, I, s))(k)$), closed on Initialize($(Step While > \theta(a, I, s))(k)$), and parahalting and $(Step While > \theta(a, I, s))(k)(a) > 0$ and $(Step While > \theta(a, I, s))(k)(intloc(0)) = 1$. Then $(Step While > \theta(a, I, s))(k + 1) \upharpoonright D = \text{IExec}(I, (Step While > \theta(a, I, s))(k)) \upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (39) If ProperBodyWhile>0 (a, I_1, s) or I_1 is parahalting and if s(intloc(0)) = 1, then for every k holds $(Step While>0(a, I_1, s))(k)(\text{intloc}(0)) = 1$.
- (40) If ProperBodyWhile>0 (a, I, s_1) and $s_1 \upharpoonright D = s_2 \upharpoonright D$, then for every k holds $(StepWhile>\theta(a, I, s_1))(k) \upharpoonright D = (StepWhile>\theta(a, I, s_2))(k) \upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.

Let s be a state of SCM_{FSA} , let a be a read-write integer location, and let I be a macro instruction. Let us assume that ProperBodyWhile>0(a, I, s) or I is parahalting and WithVariantWhile>0(a, I, s).

The functor $ExitsAtWhile > \theta(a, I, s)$ yields a natural number and is defined by the condition (Def. 6).

- (Def. 6) There exists a natural number k such that
 - (i) $ExitsAtWhile > \theta(a, I, s) = k$,
 - (ii) $(Step While > \theta(a, I, s))(k)(a) \leq 0,$

- (iii) for every natural number i such that $(Step While > \theta(a, I, s))(i)(a) \leq 0$ holds $k \leq i$, and
- (iv) (Computation($s+\cdot((\mathbf{while}\ a>0\ \mathbf{do}\ I)+\cdot S_1))$)(LifeSpan($s+\cdot((\mathbf{while}\ a>0\ \mathbf{do}\ I)+\cdot S_1))$) $\upharpoonright D=(Step\,While>\theta(a,I,s))(k)\upharpoonright D,$ where $S_1=\operatorname{Start-At}(\operatorname{insloc}(0))$ and $D=\operatorname{Int-Locations}\cup\operatorname{FinSeq-Locations}.$

Next we state several propositions:

- (41) If $s(\operatorname{intloc}(0)) = 1$ and $s(a) \leq 0$, then $\operatorname{IExec}(\mathbf{while}\ a > 0\ \mathbf{do}\ I, s) \upharpoonright D = s \upharpoonright D$, where $D = \operatorname{Int-Locations} \cup \operatorname{FinSeq-Locations}$.
- (42) If ProperBodyWhile>0(a, I, Initialize(s)) or I is parahalting and if WithVariantWhile>0(a, I, Initialize(s)), then IExec(**while** a > 0 **do** I, s) $\upharpoonright D$ = (StepWhile>0(a, I, Initialize(<math>s)))(ExitsAtWhile>0(a, I, Initialize(<math>s))) $\upharpoonright D$, where $D = Int-Locations \cup FinSeq-Locations$.
- (43) If $(Step While > \theta(a, I, s))(k)(a) \leq 0$, then for every natural number n such that $k \leq n$ holds $(Step While > \theta(a, I, s))(n) \upharpoonright D = (Step While > \theta(a, I, s))(k) \upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (44) If $s_1 \upharpoonright D = s_2 \upharpoonright D$ and ProperBodyWhile>0 (a, I, s_1) , then ProperBodyWhile>0 (a, I, s_2) , where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (45) Suppose $s(\operatorname{intloc}(0)) = 1$ and ProperBodyWhile>0 (a, I_1, s) and WithVariantWhile>0 (a, I_1, s) . Let given i, j. Suppose $i \neq j$ and $i \leq ExitsAtWhile>0(a, I_1, s)$ and $j \leq ExitsAtWhile>0(a, I_1, s)$. Then $(StepWhile>0(a, I_1, s))(i) \neq (StepWhile>0(a, I_1, s))(j)$ and $(StepWhile>0(a, I_1, s))(i) \upharpoonright D \neq (StepWhile>0(a, I_1, s))(j) \upharpoonright D$, where $D = \operatorname{Int-Locations} \cup \operatorname{FinSeq-Locations}$.

Let f be a function from \prod (the object kind of \mathbf{SCM}_{FSA}) into \mathbb{N} . We say that f is on data only if and only if:

(Def. 7) For all s_1 , s_2 such that $s_1 \upharpoonright D = s_2 \upharpoonright D$ holds $f(s_1) = f(s_2)$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.

We now state two propositions:

- (46) Suppose $s(\operatorname{intloc}(0)) = 1$ and ProperBodyWhile>0 (a, I_1, s) and WithVariantWhile>0 (a, I_1, s) . Then there exists a function f from \prod (the object kind of \mathbf{SCM}_{FSA}) into $\mathbb N$ such that f is on data only and for every natural number k holds $f((StepWhile>0(a, I_1, s))(k+1)) < f((StepWhile>0(a, I_1, s))(k))$ or $(StepWhile>0(a, I_1, s))(k)(a) \leq 0$.
- (47) If $s_1(\text{intloc}(0)) = 1$ and $s_1 \upharpoonright D = s_2 \upharpoonright D$ and ProperBodyWhile>0 (a, I_1, s_1) and WithVariantWhile>0 (a, I_1, s_1) , then WithVariantWhile>0 (a, I_1, s_2) , where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.

5. A MACRO FOR THE fusc FUNCTION

Let N, r_1 be integer locations. The functor Fusc_macro(N, r_1) yields a macro instruction and is defined as follows:

```
(Def. 8) Fusc_macro(N, r_1) = SubFrom(r_1, r_1); (n_1:= intloc(0)); (a_1:=N); (while a_1 > 0 do ((r_2:=2); Divide(a_1, r_2); (if r_2 = 0 then Macro(AddTo(n_1, r_1)) else Macro(AddTo(r_1, n_1))))), where n_1 = 1^{\text{st}}-RWNotIn(\{N, r_1\}), a_1 = 2^{\text{nd}}-RWNotIn(\{N, r_1\}), and r_2 = 3^{\text{rd}}-RWNotIn(\{N, r_1\}).
```

One can prove the following proposition

(48) Let N, r_1 be read-write integer locations. Suppose $N \neq r_1$. Let n be a natural number. If n = s(N), then $(\text{IExec}(\text{Fusc_macro}(N, r_1), s))(r_1) = \text{Fusc}(n)$ and $(\text{IExec}(\text{Fusc_macro}(N, r_1), s))(N) = n$.

REFERENCES

- Noriko Asamoto. Conditional branch macro instructions of SCM_{FSA}. Part I. Formalized Mathematics, 6(1):65-72, 1997.
- [2] Noriko Asamoto. Conditional branch macro instructions of SCM_{FSA}. Part II. Formalized Mathematics, 6(1):73-80, 1997.
- [3] Noriko Asamoto. Constant assignment macro instructions of **SCM**_{FSA}. Part II. Formalized Mathematics, 6(1):59–63, 1997.
- [4] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.
- [5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.
- [6] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [7] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [8] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized Mathematics, 4(1):61-67, 1993.
- [9] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part I preliminaries. Formalized Mathematics, 4(1):69-72, 1993.
- [10] Grzegorz Bancerek and Piotr Rudnicki. Two programs for **scm**. Part II programs. Formalized Mathematics, 4(1):73–75, 1993.
- [11] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [12] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [13] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

- [14] Jing-Chao Chen. While macro instructions of \mathbf{SCM}_{FSA} . Formalized Mathematics, 6(4):553–561, 1997.
- [15] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151–160, 1992.
- [16] Piotr Rudnicki. On the composition of non-parahalting macro instructions. Formalized Mathematics, 7(1):87–92, 1998.
- [17] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.
- [18] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCM_{FSA}. Formalized Mathematics, 6(1):29–36, 1997.
- [19] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics, 5(1):1–8, 1996.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
- [21] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51–56, 1993.
- [22] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of SCM_{FSA}. Formalized Mathematics, 5(4):571–576, 1996.
- [23] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCM_{FSA} computer. Formalized Mathematics, 5(4):519–528, 1996.
- [24] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [26] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
- [29] Wojciech Zielonka. Preliminaries to the Lambek calculus. Formalized Mathematics, 2(3):413–418, 1991.

Received June 3, 1998