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The articles [13], [12], [6], [17], [1], [15], [11], [5], [7], [10], [8], [18], [2], [19], [14],

[16], [3], [4], and [9] provide the terminology and notation for this paper.

1. Trees and Binary Trees

One can prove the following propositions:

(1) For every set D and for every finite sequence p and for every natural

number n such that p ∈ D∗ holds p↾ Segn ∈ D∗.

(2) For every binary tree T holds every element of T is a finite sequence of

elements of Boolean.

Let T be a binary tree. We see that the element of T is a finite sequence of

elements of Boolean.

Next we state several propositions:

(3) For every tree T such that T = {0, 1}∗ holds T is binary.

(4) For every tree T such that T = {0, 1}∗ holds Leaves(T ) = ∅.

(5) Let T be a binary tree, n be a natural number, and t be an element of

T . If t ∈ T -level(n), then t is a tuple of n and Boolean.

(6) For every tree T such that for every element t of T holds succ t = {t a

〈0〉, t a 〈1〉} holds Leaves(T ) = ∅.

(7) For every tree T such that for every element t of T holds succ t = {t a

〈0〉, t a 〈1〉} holds T is binary.

(8) For every tree T holds T = {0, 1}∗ iff for every element t of T holds

succ t = {t a 〈0〉, t a 〈1〉}.
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In this article we present several logical schemes. The scheme Decorated-

BinTreeEx deals with a non empty set A, an element B of A, and a ternary

predicate P, and states that:

There exists a binary tree D decorated with elements of A such

that domD = {0, 1}∗ and D(ε) = B and for every node x of D

holds P[D(x), D(x a 〈0〉), D(x a 〈1〉)]

provided the following requirement is met:

• For every element a of A there exist elements b, c of A such that

P[a, b, c].

The scheme DecoratedBinTreeEx1 deals with a non empty set A, an element

B of A, and two binary predicates P, Q, and states that:

There exists a binary tree D decorated with elements of A such

that domD = {0, 1}∗ and D(ε) = B and for every node x of D

holds P[D(x), D(x a 〈0〉)] and Q[D(x), D(x a 〈1〉)]

provided the following requirements are met:

• For every element a of A there exists an element b of A such that

P[a, b], and

• For every element a of A there exists an element b of A such that

Q[a, b].

Let T be a binary tree and let n be a non empty natural number. The functor

NumberOnLevel(n, T ) yields a function from T -level(n) into N and is defined

as follows:

(Def. 1) For every element t of T such that t ∈ T -level(n) and for every tuple F of

n and Boolean such that F = Rev(t) holds (NumberOnLevel(n, T ))(t) =

Absval(F ) + 1.

Let T be a binary tree and let n be a non empty natural number. Note that

NumberOnLevel(n, T ) is one-to-one.

2. Full Trees

Let T be a tree. We say that T is full if and only if:

(Def. 2) T = {0, 1}∗.

We now state three propositions:

(9) {0, 1}∗ is a tree.

(10) For every tree T such that T = {0, 1}∗ and for every natural number n

holds 〈0, . . . , 0
︸ ︷︷ ︸

n

〉 ∈ T -level(n).

(11) Let T be a tree. Suppose T = {0, 1}∗. Let n be a non empty natural

number and y be a tuple of n and Boolean. Then y ∈ T -level(n).
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Let T be a binary tree and let n be a natural number. Observe that T -level(n)

is finite.

One can check that every tree which is full is also binary.

One can verify that there exists a tree which is full.

One can prove the following proposition

(12) For every full tree T and for every non empty natural number n holds

Seg (the n-th power of 2) ⊆ rngNumberOnLevel(n, T ).

Let T be a full tree and let n be a non empty natural number. The functor

FinSeqLevel(n, T ) yielding a finite sequence of elements of T -level(n) is defined

by:

(Def. 3) FinSeqLevel(n, T ) = (NumberOnLevel(n, T ))−1.

Let T be a full tree and let n be a non empty natural number. Note that

FinSeqLevel(n, T ) is one-to-one.

Next we state a number of propositions:

(13) For every full tree T and for every non empty natural number n holds

(NumberOnLevel(n, T ))(〈0, . . . , 0
︸ ︷︷ ︸

n

〉) = 1.

(14) Let T be a full tree, n be a non empty natural number, and y be a tuple of

n and Boolean. If y = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉, then (NumberOnLevel(n, T ))(¬y) = the

n-th power of 2.

(15) For every full tree T and for every non empty natural number n holds

(FinSeqLevel(n, T ))(1) = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉.

(16) Let T be a full tree, n be a non empty natural number, and y be a

tuple of n and Boolean. If y = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉, then (FinSeqLevel(n, T ))(the

n-th power of 2) = ¬y.

(17) Let T be a full tree, n be a non empty natural number, and i be a natural

number. If i ∈ Seg (the n-th power of 2), then (FinSeqLevel(n, T ))(i) =

Rev(n -BinarySequence(i−′ 1)).

(18) For every full tree T and for every natural number n holds T -level(n) =

the n-th power of 2.

(19) For every full tree T and for every non empty natural number n holds

lenFinSeqLevel(n, T ) = the n-th power of 2.

(20) For every full tree T and for every non empty natural number n holds

domFinSeqLevel(n, T ) = Seg (the n-th power of 2).

(21) For every full tree T and for every non empty natural number n holds

rng FinSeqLevel(n, T ) = T -level(n).

(22) For every full tree T holds (FinSeqLevel(1, T ))(1) = 〈0〉.



30 robert milewski

(23) For every full tree T holds (FinSeqLevel(1, T ))(2) = 〈1〉.

(24) Let T be a full tree and n, i be non empty natural numbers. Suppose

i ¬ the (n + 1)-th power of 2. Let F be a tuple of n and Boolean. If

F = (FinSeqLevel(n, T ))((i + 1) ÷ 2), then (FinSeqLevel(n + 1, T ))(i) =

F a 〈(i + 1)mod 2〉.
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