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The notation and terminology used here are introduced in the following papers:
[10], [9], [7], (3], [2], [4], [12], [6], [5], [14], [1], [8], [15], [11], and [13].

1. BINARY ARITHMETICS

The following propositions are true:

(1) For every non empty natural number n and for every tuple F' of n and
Boolean holds Absval(F') < the n-th power of 2.

(2) For every non empty natural number n and for all tuples Fj, Fy of n
and Boolean such that Absval(F}) = Absval(F3) holds Fy = Fb.

(3) For all finite sequences t1, t2 such that Rev(¢;) = Rev(t2) holds t; = ta.

(4) For every natural number n holds (0,...,0) = (0,...,0) ~ (0).
~—— N~——
n+1 n
(5) For every natural number n holds (0, ...,0) € Boolean™.
——

n

(6) For every natural number n and for every tuple y of n and Boolean such

that y = (0,...,0) holds -y =n — 1.

——
n

(7) For every non empty natural number n and for every tuple F' of n and

Boolean such that F' = (0,...,0) holds Absval(F') = 0.

——
n

(8) Let n be a non empty natural number and F be a tuple of n and Boolean.

If F=(0,...,0), then Absval(—F') = (the n-th power of 2)—1.

——

n
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(9) For every natural number n holds Rev((0,...,0)) = (0,...,0).
———

n n
(10) For every natural number n and for every tuple y of n and Boolean such
that y = (0,...,0) holds Rev(—y) = —.
——
n
(11) Binl(1) = (true).
(12) For every non empty natural number n holds Absval(Binl(n)) = 1.

(13) For all elements z, y of Boolean holds x V y = true iff x = true or
y = true and x V y = false iff © = false and y = false.

(14) For all elements z, y of Boolean holds add_ovfl((z), (y)) = true iff z =
true and y = true.

—(false) = (true).

—(true) = (false).

)
)

17)  (false) + (false) = (false).
) (false) + (true) = (true) and (true) + (false) = (true).
) (true) + (true) = (false).
)

Let n be a non empty natural number and z, y be tuples of n and
Boolean. Suppose m,z = true and 7, carry(z, Binl(n)) = true. Let k be
a non empty natural number. If k£ # 1 and k£ < n, then mpx = true and
7y, carry(x, Binl(n)) = true.

(21) For every non empty natural number n and for every tuple x of n and
Boolean such that m,x = true and m, carry(z,Binl(n)) = true holds
carry(z,Binl(n)) = = Binl(n).

(22) Let n be a non empty natural number and z, y be tuples of n and
Boolean. If y = (0,...,0) and m,x = true and m, carry(z, Binl(n)) = true,

——
n

then z = —y.

(23) For every non empty natural number n and for every tuple y of n and
Boolean such that y = (0,...,0) holds carry(—y, Binl(n)) = = Binl(n).
——

n
(24) Let n be a non empty natural number and z, y be tuples of n and
Boolean. If y = (0, ...,0), then add_ovfl(x, Binl(n)) = true iff x = —y.
——
n

(25) For every non empty natural number n and for every tuple z of n and
Boolean such that z = (0,...,0) holds =z + Binl(n) = z.
——

n
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2. BINARY SEQUENCES

Let n, k be natural numbers. The functor n-BinarySequence(k) yielding a
tuple of n and Boolean is defined by:

(Def. 1) For every natural number 4 such that ¢ € Segn holds
mi(n-BinarySequence(k)) = ((k + (the (i =" 1)-th power of 2)) mod 2 =
0 — false, true).
One can prove the following propositions:

(26) For every natural number n holds n-BinarySequence(0) = (0, ..., 0).
——

n

(27) For all natural numbers n, k such that k£ < the n-th power of 2 holds
((n + 1) -BinarySequence(k))(n + 1) = false.

(28) Let n be a non empty natural number and k be a natural num-
ber. If & < the n-th power of 2, then (n + 1)-BinarySequence(k) =
(n-BinarySequence(k)) ™ (false).

(29) For every non empty natural number n holds (n+1) -BinarySequence(the
n-th power of 2) = (0,...,0) ™~ (true).

——
n

(30) Let n be a non empty natural number and k£ be a natural number.
Suppose the n-th power of 2 < k and k < the (n+ 1)-th power of 2. Then
((n+ 1) -BinarySequence(k))(n + 1) = true.

(31) Let n be a non empty natural number and k be a natural number.
Suppose the n-th power of 2 < k and k < the (n + 1)-th power of 2. Then
(n + 1) -BinarySequence(k) = (n-BinarySequence(k — (the n-th power of
2))) "~ (true).

(32) Let n be a non empty natural number and k be a natural number.
Suppose k < the n-th power of 2. Let = be a tuple of n and Boolean. If
x = (0,...,0), then n-BinarySequence(k) = —z iff k = (the n-th power of

——
-1,

(33) Let n be a non empty natural number and k be a natural number. If k£ +
1 < the n-th power of 2, then add_ovfl(n-BinarySequence(k), Binl(n)) =
false.

(34) Let n be a non empty natural number and k be a natural num-
ber. If £ + 1 < the n-th power of 2, then n-BinarySequence(k + 1) =
(n-BinarySequence(k)) 4+ Binl(n).

(35) For all natural numbers n, i holds (n + 1)-BinarySequence(i) = (i mod
2) ~ (n-BinarySequence(i < 2)).

(36) For every non empty natural number n and for every natural number k
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such that & < the n-th power of 2 holds Absval(n-BinarySequence(k)) =
k.

(37) For every non empty natural number n and for every tuple = of n and

Boolean holds n-BinarySequence(Absval(x)) = .
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