The Chinese Remainder Theorem

Andrzej Kondracki
AMS Management Systems Poland
Warsaw

Abstract

Summary. The article is a translation of the first chapters of a book Wstep do teorii liczb (Eng. Introduction to Number Theory) by W. Sierpiński, WSiP, Biblioteczka Matematyczna, Warszawa, 1987. The first few pages of this book have already been formalized in MML. We prove the Chinese Remainder Theorem and Thue's Theorem as well as several useful number theory propositions.

MML Identifier: WSIERP_1.

The terminology and notation used in this paper are introduced in the following articles: [20], [16], [9], [14], [18], [1], [10], [13], [12], [15], [11], [17], [21], [6], [7], [2], [5], [3], [8], [4], and [19].

For simplicity, we follow the rules: x, y, z, w denote real numbers, a, b, c, d, e, f, g denote natural numbers, k, l, m, n, m_{1}, n_{1} denote integers, and q denotes a rational number.

The following propositions are true:
(1) If $y \neq 0$, then $\left(\frac{x}{y}\right)^{a}=\frac{x^{a}}{y^{a}}$.
(2) $x^{2}=x \cdot x$ and $(-x)^{2}=x^{2}$.
(3) $(-x)^{2 \cdot a}=x^{2 \cdot a}$ and $(-x)^{2 \cdot a+1}=-x^{2 \cdot a+1}$.
(4) If $x \neq 0$, then $x_{\mathbb{Z}}^{a}=x^{a}$.
(5) If $x \geqslant 0$ and $y \geqslant 0$ and $d>0$ and $x^{d}=y^{d}$, then $x=y$.
(6) $x>\max (y, z)$ iff $x>y$ and $x>z$.
(7) If $x \leqslant 0$ and $y \geqslant z$, then $y-x \geqslant z$ and $y \geqslant z+x$.
(8) If $x \leqslant 0$ and $y>z$ or $x<0$ and $y \geqslant z$, then $y>z+x$ and $y-x>z$.

Let us consider a, b. Then $\operatorname{gcd}(a, b)$ is a natural number. Let us observe that the functor $\operatorname{gcd}(a, b)$ is commutative.

Let us consider m, n. Then $m \operatorname{gcd} n$ is an integer. Let us observe that the functor $m \operatorname{gcd} n$ is commutative.

Let us consider k, a. Then k^{a} is an integer.
Let us consider a, b. Then a^{b} is a natural number.
We now state a number of propositions:
(9) If $k \mid m$ and $k \mid n$, then $k \mid m+n$.
(10) If $k \mid m$ and $k \mid n$, then $k \mid m \cdot m_{1}+n \cdot n_{1}$.
(11) If $m \operatorname{gcd} n=1$ and $k \operatorname{gcd} n=1$, then $m \cdot k \operatorname{gcd} n=1$.
(12) If $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(c, b)=1$, then $\operatorname{gcd}(a \cdot c, b)=1$.
(13) $0 \operatorname{gcd} m=|m|$ and $1 \operatorname{gcd} m=1$.
(14) 1 and k are relative prime.
(15) If k and l are relative prime, then k^{a} and l are relative prime.
(16) If k and l are relative prime, then k^{a} and l^{b} are relative prime.
(17) If $k \operatorname{gcd} l=1$, then $k \operatorname{gcd} l^{b}=1$ and $k^{a} \operatorname{gcd} l^{b}=1$.
(18) $|m| \mid k$ iff $m \mid k$.
(19) If $a \mid b$, then $a^{c} \mid b^{c}$.
(20) If $a \mid 1$, then $a=1$.
(21) If $d \mid a$ and $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}(d, b)=1$.
(22) If $k \neq 0$, then $k \mid l$ iff $\frac{l}{k}$ is an integer.
(23) If $a \leqslant b-c$, then $a \leqslant b$ and $c \leqslant b$.

In the sequel f_{1}, f_{2}, f_{3} are finite sequences.
Next we state two propositions:
(24) If $a \in \operatorname{Seg}$ len f_{2}, then $a \in \operatorname{Seg} \operatorname{len}\left(f_{2} \sim f_{3}\right)$.
(25) If $a \in \operatorname{Seg} \operatorname{len} f_{3}$, then len $f_{2}+a \in \operatorname{Seg} \operatorname{len}\left(f_{2} \sim f_{3}\right)$.

Let f_{4} be a finite sequence of elements of \mathbb{R} and let us consider a. Then $f_{4}(a)$ is a real number.

Let f_{5} be a finite sequence of elements of \mathbb{Z} and let us consider a. Then $f_{5}(a)$ is an integer.

Let f_{6} be a finite sequence of elements of \mathbb{N} and let us consider a. Then $f_{6}(a)$ is a natural number.

Let D be a non empty set and let D_{1} be a non empty subset of D. We see that the finite sequence of elements of D_{1} is a finite sequence of elements of D.

Let D be a non empty set, let D_{1} be a non empty subset of D, and let f_{7}, f_{8} be finite sequences of elements of D_{1}. Then $f_{7} \uparrow f_{8}$ is a finite sequence of elements of D_{1}.

Let D be a non empty set and let D_{1} be a non empty subset of D. Then $\varepsilon_{\left(D_{1}\right)}$ is an empty finite sequence of elements of D_{1}.
\mathbb{Z} is a non empty subset of \mathbb{R}.
For simplicity, we adopt the following convention: D, D_{1} are non empty sets, v_{1}, v_{2}, v_{3} are sets, f_{6} is a finite sequence of elements of \mathbb{N}, f_{5}, f_{9} are finite sequences of elements of \mathbb{Z}, and f_{4} is a finite sequence of elements of \mathbb{R}.

Let us consider f_{5}. Then $\sum f_{5}$ is an integer. Then $\prod f_{5}$ is an integer.
Let us consider f_{6}. Then $\sum f_{6}$ is a natural number. Then Πf_{6} is a natural number.

Let us consider a, f_{1}. The functor $f_{1} \sim a$ yielding a finite sequence is defined as follows:
(Def. 1)(i) $\quad f_{1} \sim a=f_{1}$ if $a \notin \operatorname{dom} f_{1}$,
(ii) $\operatorname{len}\left(f_{1} \sim a\right)+1=\operatorname{len} f_{1}$ and for every b holds if $b<a$, then $\left(f_{1} \sim a\right)(b)=$ $f_{1}(b)$ and if $b \geqslant a$, then $\left(f_{1} \sim a\right)(b)=f_{1}(b+1)$, otherwise.
Let us consider D, let us consider a, and let f_{1} be a finite sequence of elements of D. Then $f_{1} \sim a$ is a finite sequence of elements of D.

Let us consider D, let D_{1} be a non empty subset of D, let us consider a, and let f_{1} be a finite sequence of elements of D_{1}. Then $f_{1} \sim a$ is a finite sequence of elements of D_{1}.

One can prove the following propositions:
(26) $\left\langle v_{1}\right\rangle \sim 1=\varepsilon$ and $\left\langle v_{1}, v_{2}\right\rangle \sim 1=\left\langle v_{2}\right\rangle$ and $\left\langle v_{1}, v_{2}\right\rangle \sim 2=\left\langle v_{1}\right\rangle$ and $\left\langle v_{1}, v_{2}\right.$, $\left.v_{3}\right\rangle \sim 1=\left\langle v_{2}, v_{3}\right\rangle$ and $\left\langle v_{1}, v_{2}, v_{3}\right\rangle \sim 2=\left\langle v_{1}, v_{3}\right\rangle$ and $\left\langle v_{1}, v_{2}, v_{3}\right\rangle \sim 3=\left\langle v_{1}, v_{2}\right\rangle$.
(27) If $1 \leqslant a$ and $a \leqslant \operatorname{len} f_{4}$, then $\sum\left(f_{4} \sim a\right)+f_{4}(a)=\sum f_{4}$.
(28) If $a \in \operatorname{Seg}$ len f_{6} and $f_{6}(a) \neq 0$, then $\frac{\Pi f_{6}}{f_{6}(a)}$ is a natural number.
(29) num q and $\operatorname{den} q$ are relative prime.
(30) If $q \neq 0$ and $q=\frac{k}{a}$ and $a \neq 0$ and k and a are relative prime, then $k=\operatorname{num} q$ and $a=\operatorname{den} q$.
(31) If there exists q such that $a=q^{b}$, then there exists k such that $a=k^{b}$.
(32) If there exists q such that $a=q^{d}$, then there exists b such that $a=b^{d}$.
(33) If $e>0$ and $a^{e} \mid b^{e}$, then $a \mid b$.
(34) There exist m, n such that $\operatorname{gcd}(a, b)=a \cdot m+b \cdot n$.
(35) There exist m_{1}, n_{1} such that $m \operatorname{gcd} n=m \cdot m_{1}+n \cdot n_{1}$.
(36) If $m \mid n \cdot k$ and $m \operatorname{gcd} n=1$, then $m \mid k$.
(37) If $\operatorname{gcd}(a, b)=1$ and $a \mid b \cdot c$, then $a \mid c$.
(38) If $a \neq 0$ and $b \neq 0$, then there exist c, d such that $\operatorname{gcd}(a, b)=a \cdot c-b \cdot d$.
(39) If $f>0$ and $g>0$ and $\operatorname{gcd}(f, g)=1$ and $a^{f}=b^{g}$, then there exists e such that $a=e^{g}$ and $b=e^{f}$.
In the sequel x, y, z, t denote integers.
Next we state several propositions:
(40) There exist x, y such that $m \cdot x+n \cdot y=k$ iff $m \operatorname{gcd} n \mid k$.
(41) Suppose $m \neq 0$ and $n \neq 0$ and $m \cdot m_{1}+n \cdot n_{1}=k$. Let given x, y. If $m \cdot x+n \cdot y=k$, then there exists t such that $x=m_{1}+t \cdot \frac{n}{m \operatorname{gcd} n}$ and $y=n_{1}-t \cdot \frac{m}{m \operatorname{gcd} n}$.
(42) If $\operatorname{gcd}(a, b)=1$ and $a \cdot b=c^{d}$, then there exist e, f such that $a=e^{d}$ and $b=f^{d}$.
(43) For every d such that for every a such that $a \in \operatorname{Seg} \operatorname{len} f_{6}$ holds $\operatorname{gcd}\left(f_{6}(a), d\right)=1$ holds $\operatorname{gcd}\left(\prod f_{6}, d\right)=1$.
(44) Suppose len $f_{6} \geqslant 2$ and for all b, c such that $b \in \operatorname{Seg} \operatorname{len} f_{6}$ and $c \in$ Seg len f_{6} and $b \neq c$ holds $\operatorname{gcd}\left(f_{6}(b), f_{6}(c)\right)=1$. Let given f_{5}. Suppose len $f_{5}=$ len f_{6}. Then there exists f_{9} such that len $f_{9}=\operatorname{len} f_{6}$ and for every b such that $b \in \operatorname{Seg}$ len f_{6} holds $f_{6}(b) \cdot f_{9}(b)+f_{5}(b)=f_{6}(1) \cdot f_{9}(1)+f_{5}(1)$.
(45) If $x<y$ and $z \geqslant w$ or $x \leqslant y$ and $z>w$ or $x<y$ and $z>w$, then $x-z<y-w$.
(46) If $a \neq 0$ and $a \operatorname{gcd} k=1$, then there exist b, e such that $0 \neq b$ and $0 \neq e$ and $b \leqslant \sqrt{a}$ and $e \leqslant \sqrt{a}$ and $a \mid k \cdot b+e$ or $a \mid k \cdot b-e$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part I - preliminaries. Formalized Mathematics, 4(1):69-72, 1993.
[4] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T_{4} topological spaces. Formalized Mathematics, 5(3):361-366, 1996.
[5] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[13] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[14] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[15] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[19] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[20] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received December 30, 1997

